Abstract:
Disclosed herein is a method of depositing a transition metal single-atom catalyst including preparing a carbon carrier, and depositing a transition metal single-atom catalyst on the carbon carrier, in which the carbon carrier is surface-treated by an oxidation process, and wherein the deposition is carried out by an arc plasma process.
Abstract:
Provided is a dye-sensitized upconversion nanophosphor including a core, a first shell surrounding at least part of the core, and an organic dye bonded to a surface of the nanophosphor to have an absorption band ranging from 650 nm to 850 nm and be excited in a near-infrared region to emit visible light.
Abstract:
Provided is a nanophosphor having a core/double shell structure, the nanophosphor including a upconversion core including a Yb3+, Ho3+, and Ce3+− co-doped fluoride-based nanophosphor represented by Formula 1; a first shell surrounding at least a portion of the upconversion core, and comprising a Nd3+ and Yb3+ co-doped fluoride-based crystalline composition represented by Formula 2; and a second shell surrounding at least a portion of the first shell, and having paramagnetic properties represented by Formula 3.
Abstract:
Provided are a nanophosphor and a silica composite including the nanophosphor. The nanophosphor has a core/first shell/second shell structure or a core/first shell/second shell/third shell structure, wherein the core includes a Yb3+-doped fluoride-based nanoparticle, the first shell is an up-conversion shell including a Yb3+ and Tm3+-codoped fluoride-based crystalline composition, the second shell is a fluoride-based emission shell, and the third shell is an outermost crystalline shell.
Abstract:
Provided is a modular experiment automation system including a main computer, a material synthesis module, and a material analysis module. The main computer interacts with a material synthesis module and a material analysis module. Upon a start request, it provides synthesis instructions for a target material. Once synthesis is complete, it instructs the analysis module to analyze the material. Based on the analysis results, if the error exceeds a threshold, it generates a new synthesis condition and re-initiates synthesis.
Abstract:
Provided is a high-durability coloring metal member. The high-durability coloring metal member includes a metal substrate, a dielectric layer provided on the metal substrate, and an oxynitride compound layer provided on the dielectric layer. The metal member is capable of expressing vivid and various colors with a color protection layer applied on the surface of the metal member.
Abstract:
Disclosed is a method for infiltrating a porous structure with a precursor solution by means of humidification. The infiltration method with a precursor solution using moisture control comprises the steps of: (S1) providing a substrate having porous structures deposited thereon; (S2) depositing, by electrospraying, a precursor solution on the substrate having porous structures deposited thereon; (S3) humidifying the porous structures having the precursor solution deposited thereon; and (S4) sintering the humidified porous structures.
Abstract:
Provided is a fluoride nanophosphor using, as cores, luminescent nanoparticles expressed by Chemical Formula 1. LiEr1-x-yLyF4:Tm3+x [Chemical Formula 1] (In Chemical Formula 1, x is a real number satisfying 0≤x≤0.3, y is a real number satisfying 0≤y≤0.8 and is selected within a range satisfying 0≤x+y≤0.9, and L is any one selected from the group consisting of yttrium (Y), lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), ytterbium (Yb), lutetium (Lu), and a combination thereof.)
Abstract:
Provided is a catalyst for synthesizing hydrogen peroxide as represented by the following Chemical Formula 1: RhxAg(1-x), [Chemical Formula 1] where 0
Abstract:
The present invention relates to a coating composition having excellent wavelength conversion efficiency and a wavelength converting thin film/sheet prepared using the same. The coating composition of the present disclosure includes 1 to 60 wt % of polyorgano-silsesquioxane, 0.0001 to 30.0 wt % of a wavelength converting agent, and a solvent, and exhibits a transmittance of 70% or more as compared to that of an aqueous solution. A wavelength converting thin film/sheet prepared by using the coating composition has not only excellent photoluminescence, thermal resistance, and light-fastness, but also moisture and oxygen permeability is low, and the visible light transmittance thereof is 70% or more as compared to that of the air, and when patterning is added, the photoluminescence intensity of sheet is at least two-fold higher than that of a non-patterned sheet. Therefore, the coating composition of the present invention may be conveniently used in the preparation of a wavelength converting thin film/sheet, and feasibly applied to the preparation of a solar cell in an efficient manner.