Abstract:
Overheat and fire detection for aircraft systems includes an optical controller and a fiber optic loop extending from the optical controller. The fiber optic loop extends through one or more zones of the aircraft. An optical signal is transmitted through the fiber optic loop from the optical controller and is also received back at the optical controller. The optical controller analyzes the optical signal to determine the temperature, strain, or both experienced within the zones.
Abstract:
Overheat and fire detection for aircraft systems includes an optical controller and a fiber optic loop extending from the optical controller. The fiber optic loop extends through one or more zones of the aircraft. An optical signal is transmitted through the fiber optic loop from the optical controller and is also received back at the optical controller. The optical controller analyzes the optical signal to determine the temperature, strain, or both experienced within the zones.
Abstract:
A method for calibrating a test light to simulate a fire includes measuring a baseline resistance induced in a sensor cell of a two-color detector in response to a controlled fire. The method includes monitoring a test resistance induced in the sensor cell in response to exposure to emissions from a test light and adjusting the emissions of the test light until the test resistance of the sensor cell equals the baseline resistance of the sensor cell to achieve a calibration setting for the test light. A test light for a detector includes a housing and a first LED within the housing having a first emission wavelength. A second LED is within the housing. The second LED has a second emission wavelength. The second emission wavelength is different than the first emission wavelength.
Abstract:
An integral testing system for testing OFDs is provided. The OFD may comprise a body, a detector, and an infrared source. The detector and the infrared source may be housed with the body. The infrared source may be configured to generate emissions having one or more infrared wavelengths that are detectable by the detector. The infrared source may be configured to produce infrared emissions to simulate flaming fire.
Abstract:
Overheat and fire detection for aircraft systems includes an optical controller and a fiber optic loop extending from the optical controller. The fiber optic loop extends through one or more zones of the aircraft. An optical signal is transmitted through the fiber optic loop from the optical controller and is also received back at the optical controller. The optical controller analyzes the optical signal to determine the temperature, strain, or both experienced within the zones.
Abstract:
A testing device for testing infrared OFDs is provided. The testing device may comprise a body, an infrared source, a controller and a user input. The infrared source may be housed with the body. The controller may be operatively coupled to the infrared source. The controller may also be integral to the infrared source. The user input may be operatively coupled to at least one of the controller and the infrared source. The testing device may be configured to produce infrared emissions to simulate flaming fire.
Abstract:
A method for calibrating a test light to simulate a fire includes measuring a baseline resistance induced in a sensor cell of a two-color detector in response to a controlled fire. The method includes monitoring a test resistance induced in the sensor cell in response to exposure to emissions from a test light and adjusting the emissions of the test light until the test resistance of the sensor cell equals the baseline resistance of the sensor cell to achieve a calibration setting for the test light. A test light for a detector includes a housing and a first LED within the housing having a first emission wavelength. A second LED is within the housing. The second LED has a second emission wavelength. The second emission wavelength is different than the first emission wavelength.
Abstract:
Overheat and fire detection for aircraft systems includes an optical controller and a fiber optic loop extending from the optical controller. The fiber optic loop extends through one or more zones of the aircraft. An optical signal is transmitted through the fiber optic loop from the optical controller and is also received back at the optical controller. The optical controller analyzes the optical signal to determine the temperature, strain, or both experienced within the zones.
Abstract:
An overheat sensor system is provided. A controller may create an aircraft temperature profile and may compare temperature sensor data to the profile. The system may provide an output indicating temperatures or fires.
Abstract:
Overheat and fire detection for aircraft systems includes an optical controller and a fiber optic loop extending from the optical controller. The fiber optic loop extends through one or more zones of the aircraft. An optical signal is transmitted through the fiber optic loop from the optical controller and is also received back at the optical controller. The optical controller analyzes the optical signal to determine the temperature, strain, or both experienced within the zones.