Abstract:
Disclosed is a method of manufacturing flash memory with a vertical cell stack structure. The method includes forming source lines in a cell area of a substrate having an ion-implanted well and forming an alignment mark relative to the source lines. The alignment mark is formed in the substrate outside the cell area of the substrate. After formation of the source lines, cell stacking layers are formed. After forming the cell stacking layers, cell pillars in the cell stacking layers are formed at locations relative to the previously formed source lines using the alignment mark to correctly locate the cell pillars.
Abstract:
A three-dimensional integrated circuit non-volatile memory array includes a memory array of vertical channel NAND flash strings connected between a substrate source line and upper layer connection lines which each include n-type drain regions and p-type body line contact regions alternately disposed on each side of undoped or lightly doped string body regions so that each NAND flash string includes a vertical string body portion connected to a horizontal string body portion formed from the string body regions of the upper body connection lines.
Abstract:
Disclosed is a method of manufacturing flash memory with a vertical cell stack structure. The method includes forming source lines in a cell area of a substrate having an ion-implanted well and forming an alignment mark relative to the source lines. The alignment mark is formed in the substrate outside the cell area of the substrate. After formation of the source lines, cell stacking layers are formed. After forming the cell stacking layers, cell pillars in the cell stacking layers are formed at locations relative to the previously formed source lines using the alignment mark to correctly locate the cell pillars.
Abstract:
A non-volatile memory device having a memory array organized into a plurality of memory blocks, having either planar memory cells or stacks of cells. Row decoding circuitry of the memory device is configured to select a group of the plurality of memory blocks in response to a first row address, and to select a memory block of the group for receiving row signals in response to a second row address. Row decoding circuitry associated with each group of memory blocks can have a row pitch spacing that is greater than a row pitch spacing of a single memory block and less than or equal to a total row pitch spacing corresponding to the group of memory blocks.
Abstract:
A non-volatile memory device using existing row decoding circuitry to selectively provide a global erase voltage to at least one selected memory block in order to facilitate erasing of all the non-volatile memory cells of the at least one selected memory block. More specifically, the erase voltage is coupled to the cell body or substrate of memory cells of the at least one selected memory block, where the cell body is electrically isolated from the cell body of non-volatile memory cells in at least one other memory block. By integrating the erase voltage path with the existing row decoding circuitry used to drive row signals for a selected memory block, no additional decoding logic or circuitry is required for providing the erase voltage to the at least one selected memory block.
Abstract:
Generally, the present disclosure provides a non-volatile memory device having a hierarchical bitline structure for preventing erase voltages applied to one group of memory cells of the memory array from leaking to other groups in which erasure is not required. Local bitlines are coupled to the memory cells of each group of memory cells. Each local bitline can be selectively connected to a global bitline during read operations for the selected group, and all the local bitlines can be disconnected from the global bitline during an erase operation when a specific group is selected for erasure. Select devices for electrically connecting each bitline of a specific group of memory cells to the global bitline have device bodies that are electrically isolated from the bodies of those memory cells.
Abstract:
A flash device comprising a well and a U-shaped flash cell string, the U-shaped flash cell string built directly on a substrate adjacent the well. The U-shaped flash cell string comprises one portion parallel to a surface of the substrate, comprising a junctionless bottom pass transistor, and two portions perpendicular to the surface of the substrate that comprise a string select transistor at a first top of the cell string, a ground select transistor at a second top of the cell string, a string select transistor drain, and a ground select transistor source.
Abstract:
Disclosed is a method of manufacturing flash memory with a vertical cell stack structure. The method includes forming source lines in a cell area of a substrate having an ion-implanted well and forming an alignment mark relative to the source lines. The alignment mark is formed in the substrate outside the cell area of the substrate. After formation of the source lines, cell stacking layers are formed. After forming the cell stacking layers, cell pillars in the cell stacking layers are formed at locations relative to the previously formed source lines using the alignment mark to correctly locate the cell pillars.
Abstract:
A three-dimensional integrated circuit non-volatile memory array includes a memory array with multiple vertical gate NAND memory cell strings formed in a different vertical layers over a substrate which share a common set of word lines, where different groupings of NAND memory cell strings formed between dedicated pairings of source line structures and bit line structures form separately erasable blocks which are addressed and erased by applying an erase voltage to the source line structure of the erase block being erased while applying a ground voltage to the other source line structures in the array and a high pass voltage to the bit line structures in the array.
Abstract:
A non-volatile memory system that has junctionless transistors is provided that uses suppression of the formation of an inversion-layer source and drain in the junctionless transistors to cause a discontinuous channel in at least one string. The system may include NAND flash memory cells composed of junctionless transistors, and has a set of wordlines. During program operation, a selected wordline of the set of wordlines is biased at a program voltage, and wordline voltage low enough to suppress the formation of source/drains is applied on at least one word line on a source side of the selected wordline such that a channel isolation occurs thereby causing the discontinuous channel in the at least string.