摘要:
A distributed clipping scheme is provided, view frustum culling is distributed in several places in a graphics processing pipeline to simplify hardware implementation and improve performance. In general, many 3D objects are outside viewing frustum. In one embodiment, clipping is performed on these objects with a simple algorithm in the PA module, such as near Z clipping, trivial rejection and trivial acceptance. In one embodiment, the SE and RA modules perform the rest of clipping, such as X, Y and far Z clipping. In one embodiment, the SE module performs clipping by way of computing a initial point of rasterization. In one embodiment, the RA module performs clipping by way of conducting the rendering step of the rasterization process. This approach distributes the complexity in the graphics processing pipeline and makes the design simpler and faster, therefore design complexity, cost and performance may all be improved in hardware implementation.
摘要:
A distributed clipping scheme is provided, view frustum culling is distributed in several places in a graphics processing pipeline to simplify hardware implementation and improve performance. In general, many 3D objects are outside viewing frustum. In one embodiment, clipping is performed on these objects with a simple algorithm in the PA module, such as near Z clipping, trivial rejection and trivial acceptance. In one embodiment, the SE and RA modules perform the rest of clipping, such as X, Y and far Z clipping. In one embodiment, the SE module performs clipping by way of computing a initial point of rasterization. In one embodiment, the RA module performs clipping by way of conducting the rendering step of the rasterization process. This approach distributes the complexity in the graphics processing pipeline and makes the design simpler and faster, therefore design complexity, cost and performance may all be improved in hardware implementation.
摘要:
A semiconductor device has a flipchip semiconductor die mounted to a first substrate using a plurality of first bumps. An opening or plurality of openings is formed in the first substrate in a location central to placement of the flipchip semiconductor die to the first substrate. A plurality of semiconductor die is mounted to a second substrate. The semiconductor die are electrically connected with bond wires. An encapsulant is over the plurality of semiconductor die and second substrate. The second substrate is mounted to the first substrate with a plurality of second bumps. An underfill material is dispensed through the opening in the first substrate between the flipchip semiconductor die and first substrate. The dispensing of the underfill material is discontinued as the underfill material approaches or reaches a perimeter of the flipchip semiconductor die to reduce bleeding of the underfill material. The underfill material is cured.
摘要:
A method comprising, receiving a source code, identifying a data structure access in the source code, determining whether the data structure access is associated with a security check function, defining the data structure access as a security sensitive operation responsive to determining that the data structure access is associated with the security check function, and defining a security specification to include the security check function and the security sensitive operation.
摘要:
A method and an apparatus are provided for performing waveform analysis on physiological parameters. In one embodiment, a method includes reading measurement values of a first physiological parameter relating to time, and displaying them as a trend display graph in a trend display area that includes first coordinates representing time and second coordinates representing the measurement values. The method also includes acquiring a time selected in the trend display graph, and displaying, in a waveform display area, waveform data of a second physiological parameter associated with formation of the first physiological parameter during periods before and after the selected time. The waveform display area includes time coordinates. The disclosed embodiments allow medical staff to view the curve of a patient's physiological parameters throughout a monitoring/therapy period. Medical staff may make a detailed analysis of the waveform data in real time, which may provide a basis for making decisions in the following therapy processes.
摘要:
A semiconductor device has a flipchip semiconductor die mounted to a first substrate using a plurality of first bumps. An opening or plurality of openings is formed in the first substrate in a location central to placement of the flipchip semiconductor die to the first substrate. A plurality of semiconductor die is mounted to a second substrate. The semiconductor die are electrically connected with bond wires. An encapsulant is over the plurality of semiconductor die and second substrate. The second substrate is mounted to the first substrate with a plurality of second bumps. An underfill material is dispensed through the opening in the first substrate between the flipchip semiconductor die and first substrate. The dispensing of the underfill material is discontinued as the underfill material approaches or reaches a perimeter of the flipchip semiconductor die to reduce bleeding of the underfill material. The underfill material is cured.
摘要:
A method and an apparatus are provided for performing waveform analysis on physiological parameters. In one embodiment, a method includes reading measurement values of a first physiological parameter relating to time, and displaying them as a trend display graph in a trend display area that includes first coordinates representing time and second coordinates representing the measurement values. The method also includes acquiring a time selected in the trend display graph, and displaying, in a waveform display area, waveform data of a second physiological parameter associated with formation of the first physiological parameter during periods before and after the selected time. The waveform display area includes time coordinates. The disclosed embodiments allow medical staff to view the curve of a patient's physiological parameters throughout a monitoring/therapy period. Medical staff may make a detailed analysis of the waveform data in real time, which may provide a basis for making decisions in the following therapy processes.
摘要:
A pattern matching technique for high throughput network processing includes a simple yet powerful special purpose architecture and a set of novel string matching algorithms that can work in unison. The novel set of algorithms allow for bit-level partitioning of rules such that may be more easily implemented in hardware or software. The result is a device that maintains tight worst case bounds on performance, can be updated with new rules without interrupting operation, compiles in seconds instead of hours, and is ten times more efficient than the existing best known solutions in this area.
摘要:
The system includes a robot body and a main robot control platform. The robot body includes a mechanical part and an electrical control part. The mechanical part includes a horizontal moving unit, an objective carrying platform unit and a bearing unit which are arranged in X, Y and Z cartesian coordinate directions. The objective carrying platform unit includes an objective carrying platform and a battery drive mechanism arranged on the objective carrying platform. A battery pushing mechanism is arranged on the battery drive mechanism. The electrical control part includes a data collection device connected with a main control computer system, a power drive mechanism, an I/O model and a wireless communication model I. The wireless communication model I, the wireless communication model II of a control backend and the wireless communication model III in the remote control device wirelessly communicate with each other.