Abstract:
An image sensor, readout circuitry for an image sensor, and a method of operating readout circuitry are disclosed. Readout circuitry includes an analog-to-digital-converter (“ADC”) including input stage circuitry with a first selectable input and a second selectable input. The ADC is coupled to sequentially receive a first reset signal, a second reset signal, a high gain image signal, and a low gain image signal, in that order. The input stage circuitry is configured to select the first selectable input when receiving the first reset signal and the low gain image signal and select the second selectable input when receiving the second reset signal and the high gain image signal.
Abstract:
An image sensor includes a pixel array including a plurality of pixel cells each including a floating diffusion node, a photosensitive element coupled to selectively transfer image charge to the floating diffusion node, and a feedback coupling capacitor coupled between the floating diffusion node and an output line. A bit line is coupled to selectively readout image data output from each one of a group of the plurality of pixel cells. An integrator is capacitively coupled to the bit line. The integrator is coupled to output an output signal on the output line in response to the image data. The output signal on the output line is capacitively coupled to the floating diffusion node through the feedback coupling capacitor to suppress a potential swing at the floating diffusion node of each one of the group of the plurality of pixel cells in response to the output signal.
Abstract:
An image sensor for detecting light-emitting diode (LED) without flickering includes a pixel array with pixels. Each pixel including subpixels including a first and a second subpixel, dual floating diffusion (DFD) transistor, and a capacitor coupled to the DFD transistor. First subpixel includes a first photosensitive element to acquire a first image charge, and a first transfer gate transistor to selectively transfer the first image charge from the first photosensitive element to a first floating diffusion (FD) node. Second subpixel includes a second photosensitive element to acquire a second image charge, and a second transfer gate transistor to selectively transfer the second image charge from the second photosensitive element to a second FD node. DFD transistor coupled to the first and the second FD nodes. Other embodiments are also described.
Abstract:
Apparatuses and methods for image sensors with pixels that reduce or eliminate flicker induced by high intensity illumination are disclosed. An example image sensor may include a photodiode, a transfer gate, an anti-blooming gate, and first and second source follower transistors. The photodiode may capture light and generate charge in response, and the photodiode may have a charge capacity. The transfer gate may selectively transfer charge to a first floating diffusion, and the anti-blooming gate may selectively transfer excess charge to a second floating diffusion when the generated charge is greater than the photodiode charge capacity. The first source-follower transistor may be directly coupled to the first floating diffusion by a gate, the first source-follower to selectively output a first signal to a first bitline in response to enablement of a first row selection transistor, and the second source-follower transistor may be capacitively-coupled to the second floating diffusion, the second source-follower to selectively output a second signal to a second bitline in response to enablement of a second row selection transistor.
Abstract:
An image sensor for detecting light-emitting diode (LED) without flickering includes a pixel array with pixels. Each pixel including subpixels including a first and a second subpixel, dual floating diffusion (DFD) transistor, and a capacitor coupled to the DFD transistor. First subpixel includes a first photosensitive element to acquire a first image charge, and a first transfer gate transistor to selectively transfer the first image charge from the first photosensitive element to a first floating diffusion (FD) node. Second subpixel includes a second photosensitive element to acquire a second image charge, and a second transfer gate transistor to selectively transfer the second image charge from the second photosensitive element to a second FD node. DFD transistor coupled to the first and the second FD nodes. Other embodiments are also described.
Abstract:
An image sensor includes a pixel array including a plurality of pixel cells each including a floating diffusion node, a photosensitive element coupled to selectively transfer image charge to the floating diffusion node, and a feedback coupling capacitor coupled between the floating diffusion node and an output line. A bit line is coupled to selectively readout image data output from each one of a group of the plurality of pixel cells. An integrator is capacitively coupled to the bit line. The integrator is coupled to output an output signal on the output line in response to the image data. The output signal on the output line is capacitively coupled to the floating diffusion node through the feedback coupling capacitor to suppress a potential swing at the floating diffusion node of each one of the group of the plurality of pixel cells in response to the output signal.
Abstract:
A threshold detection circuit includes a plurality of capacitors. A plurality of switching circuits is coupled to the capacitors such that a first end of each of the capacitors is coupled to a corresponding photon sensor during detection intervals, and the first end of each capacitor is coupled to a variable initialization value during reset intervals. A threshold number of the capacitors are initialized to a first value and the remaining capacitors are initialized to a second value during reset intervals. A comparator is coupled to a second of the capacitors to generate a detection event in response to the threshold number of photon sensors sensing one or more incident photons during detection intervals.
Abstract:
Apparatuses and methods for image sensors with pixels that reduce or eliminate flicker induced by high intensity illumination are disclosed. An example image sensor may include a photodiode, a transfer gate, an anti-blooming gate, and first and second source follower transistors. The photodiode may capture light and generate charge in response, and the photodiode may have a charge capacity. The transfer gate may selectively transfer charge to a first floating diffusion, and the anti-blooming gate may selectively transfer excess charge to a second floating diffusion when the generated charge is greater than the photodiode charge capacity. The first source-follower transistor may be directly coupled to the first floating diffusion by a gate, the first source-follower to selectively output a first signal to a first bitline in response to enablement of a first row selection transistor, and the second source-follower transistor may be capacitively-coupled to the second floating diffusion, the second source-follower to selectively output a second signal to a second bitline in response to enablement of a second row selection transistor.