Abstract:
It is an object to provide a sequence allocating method that, while maintaining the number of Zadoff-Chu sequences to compose a sequence group, is configured to make it possible to reduce correlations between different sequential groups. This method includes the steps of setting a standard sequence with a standard sequence length (Nb) and a standard sequence number (rb) in a step (ST101), setting a threshold value (Xth(m)) in accordance with an RB number (m) in a step (ST103), setting a sequence length (N) corresponding to RB number (m) in a step (ST104), judging whether ¦r/N−rb/Nb¦=Xth(m) is satisfied in a step (ST106), including a plurality of Zadoff-Chu sequences with a sequence number (r) and a sequence length (N) in a sequence group (rb) in a step (ST107) if the judgment is positive, and allocating the sequence group (rb) to the same cell in a step (ST112).
Abstract:
A mobile terminal determine a reference signal sequence number based on a sequence length and a first selection reference value used for a first communication system that is different from a second communication system adapting a 3GPP release 10 or earlier. The first selection reference value is obtained from a sequence group number assigned to the terminal and different from a second selection reference value used for the second communication system. The mobile terminal generates a reference signal based on the determined reference signal sequence number and transmits the generated reference signal.
Abstract:
It is an object to provide a sequence allocating method that, while maintaining the number of Zadoff-Chu sequences to compose a sequence group, is configured to make it possible to reduce correlations between different sequential groups. This method includes the steps of setting a standard sequence with a standard sequence length (Nb) and a standard sequence number (rb) in a step (ST101), setting a threshold value (Xth(m)) in accordance with an RB number (m) in a step (ST103), setting a sequence length (N) corresponding to RB number (m) in a step (ST104), judging whether ¦r/N−rb/Nb¦=Xth(m) is satisfied in a step (ST106), including a plurality of Zadoff-Chu sequences with a sequence number (r) and a sequence length (N) in a sequence group (rb) in a step (ST107) if the judgment is positive, and allocating the sequence group (rb) to the same cell in a step (ST112).
Abstract:
Disclosed is wireless communication base station equipment in which CCE allocation can be flexibly performed without collision of ACK/NACK signals between a plurality of unit bands, even when wideband transmission is performed exclusively on a downlink circuit. In this equipment, an allocation unit (105) sets up mutually different search spaces for each of a plurality of downlink unit bands, with respect to wireless communication terminal devices that communicate using a plurality of downlink unit bands, and allocates resource allocation information of downlink circuit data destined for the wireless communication terminal devices to CCEs in mutually different search spaces for each of the plurality of downlink unit bands, and an ACK/NACK reception unit (119); extracts a response signal in respect of the downlink circuit data from the uplink control channel associated with the CCE to which the resource allocation information of this downlink circuit data was allocated.
Abstract:
Disclosed are a radio transmission device and a radio transmission method which reduce the RACH conflict ratio and improve the RACH detection characteristic. When the device and the method are used: as the number of signature numbers allocated for UE by the network side increases, the condition for allocating a signature by UE itself is mitigated and an expectation value which is a statistic average value of the RA quantity using the signature allocated by UE for itself is decreased; and as the number of signature numbers allocated for UE by the network side decreases, the condition for allocating a signature by UE itself is limited and an expectation value of the RA quantity using the signature allocated by UE for itself is increased.
Abstract:
Provided are a terminal device and a retransmission control method that make it possible to minimize increases in overhead in an uplink control channel (PUCCH), even if channel selection is used as the method to transmit response signals during carrier-aggregation communication using a plurality of downlink unit bands. On the basis of the generation status of uplink data and error-detection results obtained by a CRC unit, a control unit in the provided terminal uses response signal transmission rules to control the transmission of response signals or uplink control signals that indicate the generation of uplink data. If an uplink control signal and a response signal are generated simultaneously within the same transmission time unit, the control unit changes the resources allocated to the response signal and/or the phase point of the response signal in accordance with the number and position of ACKs within the error-detection result pattern.
Abstract:
The present disclosure enables dynamic switching to a frame format different from the UL-DL configuration set by an SIB, and in particular switching to a downlink communication subframe from an uplink communication subframe, while also enabling effective utilization of downlink communication subframes. A base station uses “UL/DL communication subframe switching information” included in a DCI sent by a downlink communication subframe to instruct a terminal whether or not to perform uplink communication to a DCI using one or more uplink-specific communication subframes, and also gives instructions whether to perform uplink communication or downlink communication on an uplink communication subframe switchable to a downlink communication subframe.
Abstract:
The purpose of the present invention is to inhibit an increase in the amount of A/N resources, without changing the timing at which the error detection result of an SCell is notified when UL-DL configurations to be configured for each of the unit bands are different, from the timing at which the error detection result is notified when just a single unit band is configured. A control unit (208) transmits, using a first unit band, a response signal including error detection results about data received with both the first unit band and a second unit band. In a first composition pattern set for the first unit band, an uplink communication subframe is set to be the same timing as at least an uplink communication subframe of a second composition pattern set for the second unit band.
Abstract:
Provided are a base station, a terminal, a band allocation method, and a downlink data communication method with which bands can be efficiently allocated. In a base station in which a plurality of unit bands can be allocated to a single communication, when a data receiver acquires terminal capability information transmitted by a terminal in the initial access unit band and the bandwidth available for communication indicated by the terminal capability information can accommodate a plurality of unit bands, a unit band group which includes the initial access unit band as well as the unit bands adjacent thereto is allocated to the terminal, and a communication band movement indication, which indicates the movement of the center frequency in the communication band of the terminal toward the center frequency in the unit band group, is transmitted to the terminal using the initial access unit band.
Abstract:
Disclosed are an encoding ratio setting method and a radio communication device which can avoid encoding of control information at an encoding ratio lower than necessary and suppress lowering of the transmission efficiency of the control information. In the device, an encoding ratio setting unit (122) sets the encoding ratio R′control of the control information which is time-multiplexed with user data, according to the encoding ratio Rdata of the user data, ΔPUSCHoffset as the PUSCH offset of each control information, and ΔRANKoffset as the rank offset based on the rank value of the data channel using Expression (1). R control ′ = O Q ′ = max ( O ⌈ O 10 - Δ offset PUSCH + Δ offset Rank 10 · R data ⌉ , O 4 · M sc ) ( 1 ) Where ┌x┐ is an integer not greater than x, and max(x,y) is the greater one among X and Y.