摘要:
An SOI structure (20) includes a semiconductor layer (15) formed on an insulating substrate (12). The semiconductor layer (15) is partitioned into an ESD protection portion (32) and a circuitry portion (34). A portion of the semiconductor layer (15) in the ESD protection portion (32) and a different portion of the semiconductor layer (15) in the circuitry portion (34) are differentially thinned. A device (60) which implements the desired circuit functions of the SOI structure (20) is fabricated in the circuitry portion (34). An ESD protection device (40) is fabricated in the ESD protection portion (32). The thick semiconductor layer (15) in the ESD protection portion (32) serves to distribute the ESD current and heat over a large area, thereby improving the ability of the SOI structure (20) to withstand an ESD event.
摘要:
A method for forming a CMOS device in a manner so as to avoid dielectric layer undercut during a pre-silicide cleaning step is described. During formation of CMOS device comprising a gate stack on a semiconductor substrate surface, the patterned gate stack including gate dielectric below a conductor with vertical sidewalls, a dielectric layer is formed thereover and over the substrate surfaces. Respective nitride spacer elements overlying the dielectric layer are formed at each vertical sidewall. The dielectric layer on the substrate surface is removed using an etch process such that a portion of the dielectric layer underlying each spacer remains. Then, a nitride layer is deposited over the entire sample (the gate stack, the spacer elements at each gate sidewall, and substrate surfaces) and subsequently removed by an etch process such that only a portion of said nitride film (the “plug”) remains. The plug seals and encapsulates the dielectric layer underlying each said spacer, thus preventing the dielectric material from being undercut during the subsequent pre-silicide clean process. By preventing undercut, this invention also prevents the etch-stop film (deposited prior to contact formation) from coming into contact with the gate oxide. Thus, the integration of thin-spacer transistor geometries, which are required for improving transistor drive current, is enabled.
摘要:
A power semiconductor device which is integrable in an integrated circuit includes a semiconductor body having first and second major opposing surfaces with a first doped region of a first conductivity type therebetween, second and third doped regions of a second conductivity type formed in the first doped region, the second and third doped regions being spaced apart and abutting the first surface, and fourth and fifth doped regions of the first conductivity type respectively formed in the second and third doped regions and abutting the first surface. Sixth and seventh doped regions extend from the first surface into the first region, the sixth region being adjacent to the second and fourth regions and spaced therefrom by an electrically insulative layer, the seventh region being adjacent to the third and fifth regions and spaced therefrom by an insulative layer. The first doped region extends toward the first surface between the sixth and seventh regions and separated therefrom by an electrically insulative layer of variable thickness suitable for voltage blocking. An eighth doped region in the first doped region between the sixth and seventh regions abuts the first surface and forms the drain of a MOSFET or the anode of an IGBT. In fabricating the device, reactive ion etching is used to from a trench in which the sixth and seventh regions are formed. The trench is filled by epitaxially grown semiconductor material in which the eighth doped region is formed. The fourth and fifth doped regions form the source of a MOSFET or a cathode of an IGBT. All ohmic contacts to the device can be made on the first surface.
摘要:
A semiconductor device structure includes at least two field effect transistors formed on same substrate, the first field effect transistor includes a spacer having a first width, the second field effect transistor includes a spacer having a second width, the first width being different than said second width. Preferably, the first width is narrower than the second width.
摘要:
A method for forming a CMOS device in a manner so as to avoid dielectric layer undercut during a pre-silicide cleaning step is described. During formation of CMOS device comprising a gate stack on a semiconductor substrate surface, the patterned gate stack including gate dielectric below a conductor with vertical sidewalls, a dielectric layer is formed thereover and over the substrate surfaces. Respective nitride spacer elements overlying the dielectric layer are formed at each vertical sidewall. The dielectric layer on the substrate surface is removed using an etch process such that a portion of the dielectric layer underlying each spacer remains. Then, a nitride layer is deposited over the entire sample (the gate stack, the spacer elements at each gate sidewall, and substrate surfaces) and subsequently removed by an etch process such that only a portion of said nitride film (the “plug”) remains. The plug seals and encapsulates the dielectric layer underlying each said spacer, thus preventing the dielectric material from being undercut during the subsequent pre-silicide clean process. By preventing undercut, this invention also prevents the etch-stop film (deposited prior to contact formation) from coming into contact with the gate oxide. Thus, the integration of thin-spacer transistor geometries, which are required for improving transistor drive current, is enabled.
摘要:
In accordance with one embodiment of the present invention, a method is disclosed for forming a semiconductor device having an isolation region (601). A dielectric layer (108) is deposited and etched to form isolation regions (102, 605) having top portions that are narrower than their bottom portions, thereby a tapered isolation region is formed. Active regions (601, 603) are formed using an epitaxial process in the regions between the isolation regions. The resulting active regions (601, 603) have a greater amount of surface area near a top portion, than near a bottom portion. Transistors (721, 723) having opposite polarities are formed within the active areas.
摘要:
A pattern of dummy structures (20) is added to the layout pattern of an integrated circuit (10) to equilibrate the polishing rate across the surface of a semiconductor substrate (11). The location of each dummy structure (20) is predetermined so that it does not intersect a well boundary (17) or an active region (21,27), and does not fall under a conductive material such as a layer of polysilicon (22,28) or an interconnect structure (23,29).