Abstract:
A signal generator configured to generate an oscillating signal with a temperature-compensated frequency. The signal generator includes a ring oscillator, and a complementary to absolute temperature (CTAT) current generator configured to generate a CTAT current for the ring oscillator to temperature-compensate the frequency of the oscillating signal.
Abstract:
Systems and methods for recovering clock and data from a data input signal are disclosed that sample a plurality of clock phase signals with the data input signal to determine a timing relationship between the data input signal and the clock phase signals and use the determined to timing relationship to select one of the clock phase signals to use for sampling the data input signal to produce recovered data. The CDR can include a glitch suppression module to suppress glitches on the clock output signal that could be caused by large instantaneous jitter on the data input signal. A clock and data recovery circuit (CDR) using these methods can quickly lock to a new data input signal and can reliably receive data when there is large instantaneous timing jitter on the data input signal.
Abstract:
Techniques for reducing cross-supply current are described herein. In one embodiment, a power circuit comprises a bypass switch coupled between a first power supply and an internal power supply, and a voltage regulator coupled between a second power supply and the internal power supply. The power circuit also comprises a shut-off circuit configured to detect the first power supply powering up before the second power supply during a power-up sequence, to shut off the bypass switch upon detecting the first power supply powering up before the second power supply, to detect the second power supply powering up during the power-up sequence, and to release control of the bypass switch to a controller upon detecting the second power supply powering up.
Abstract:
A receiver architecture for memory reads is described herein. In one embodiment, a memory interface comprises a plurality of transmitters, wherein each of the plurality of transmitters is configured to transmit data to a memory device over a respective one of a plurality of I/O channels. The memory interface also comprises a plurality of receivers, wherein each of the plurality of receivers is coupled to a respective one of the plurality of transmitters, and is configured to receive data from the memory device over the respective one of the plurality of I/O channels. The plurality of receivers are grouped together into a receiver subsystem that is located away from the plurality of transmitters.
Abstract:
Various embodiments include integrated approaches to detecting attempts to breach system-level or chip-level security using photo-generated currents induced by lasers or other radiation sources. Various embodiments integrate photo-detection circuits with a secure processor or other circuit in such a manner that the response to a security attack is fast enough to prevent loss of secure or private information are described. Various embodiments include circuits capable of providing a permanent record of photocurrent detection.
Abstract:
Aspects of the disclosure are directed to a low noise physically unclonable function (PUF) cell. In accordance with one aspect, the low noise physically unclonable function (PUF) cell includes a first inverter, wherein the first inverter is configured in a negative feedback configuration; and a second inverter coupled to the first inverter in a series configuration, wherein the second inverter is configured in a first open loop configuration.
Abstract:
An apparatus for sensing distributed load currents provided by power gating circuit. The apparatus includes a power gating circuit including a set of bulk transistors coupled in series with a set of circuits between first and second voltage rails. The apparatus includes a current sensor with a first ring oscillator, a first frequency-to-code (FTC) converter, a second ring oscillator, a second FTC converter, and a subtractor. The first ring oscillator includes a first set of one or more inverters configured to receive a first voltage at a node between the power gating circuit and the first circuit, and a second set of one or more inverters configured to receive a second voltage at a second node between the power gating circuit and the second circuit. The first ring oscillator is configured to generate a signal including a frequency related to the voltage drops across the first and second sets of transistors.
Abstract:
Systems and methods for sensing temperature on a chip are described herein. In one embodiment, a temperature sensor comprises a first transistor having a gate, a second transistor having a gate coupled to the gate of the first transistor, and a bias circuit configured to bias the gates of the first and second transistors such that the first and second transistors operate in a sub-threshold region, and to generate a current proportional to a difference between a gate-to-source voltage of the first transistor and a gate-to-source voltage of the second transistor. The temperature sensor also comprises an analog-to-digital converter (ADC) configured to convert the current into a digital temperature reading.
Abstract:
One feature pertains to a true random number generator that utilizes the settling time of a bit cell as an entropy source to generate random digital output values. The bit cell may be a static random access memory bit cell. The bit cell's settling time may be converted into a digital output using an analog to digital converter. A plurality of bit cells may serially couple to one another in a ring formation. The bit cell ring can then be enabled such that each bit cell of the plurality of bit cells achieves a settling value that activates the subsequent bit cell in the ring causing it to in turn reach a settling value, and so on. An output node of one of the bit cells in the ring can then be sampled using a flip-flop to generate a continuous stream of random bits.
Abstract:
One feature pertains to a true random number generator that utilizes the settling time of a bit cell as an entropy source to generate random digital output values. The bit cell may be a static random access memory bit cell. The bit cell's settling time may be converted into a digital output using an analog to digital converter. A plurality of bit cells may serially couple to one another in a ring formation. The bit cell ring can then be enabled such that each bit cell of the plurality of bit cells achieves a settling value that activates the subsequent bit cell in the ring causing it to in turn reach a settling value, and so on. An output node of one of the bit cells in the ring can then be sampled using a flip-flop to generate a continuous stream of random bits.