Abstract:
Methods, systems, and devices are described for establishing a virtual communication link including at least a first and second physical link between two devices. A single virtual packet queue of a device may receive one or more data packets to be transmitted via the virtual communication link. The single virtual packet queue may attach a virtual sequence number to each of the one or more data packets and send the one or more data packets to one or more of the first or the second physical link according to the assigned virtual sequence numbers. The one or more packets may then be communicated via the first and/or second physical links according to link specific sequence numbers, such as medium access control (MAC) sequence numbers, assigned to the one or more data packets by the first and/or second physical links.
Abstract:
An access point determines the buffered data for each station of a plurality of stations in a BSS and groups the stations with similar station characteristics. The transmission time to the stations in a group can be apportioned. The groups can be ordered based on station characteristics and a transmission history. A sounding for a group can be performed based on the order. The MU-MIMO transmission for the group can be performed until a first condition is met. If the first condition is met, then the sounding and the MU-MIMO transmission for a next group can be performed, according to the order, until a second condition is met. The first condition can include an apportioned transmission time having expired and/or the buffers for the group being flushed. The second condition can include new data having been buffered by the AP and/or all buffered data having been transmitted.
Abstract:
A wireless device is configured to switch data rates to account for temporary channel conditions or device configuration errors. Pre-selected data rates, more likely to achieve maximum goodput, are stored in a data rate table. The data rate table contains candidate data rates for each pre-selected data rate in the data rate table. When probe transmissions using the preselected data rates fail, dynamic rate probing is utilized to determine a possible cause and extent of the problem. The dynamic rate probing scheme transmits probe transmissions using the candidate data rates and tracks success or failure of these probe transmissions. An analysis of the probe transmissions is used to indicate a possible cause and/or extent of the problematic condition and to determine whether there is a need to reconfigure the data rates in the data rate table.
Abstract:
Methods, systems, devices, and apparatuses are described for wireless communications in which first type of traffic may be transmitted from a gateway access point (AP) directly to a station. Beacon signals transmitted to the station are transmitted as part of the first type of traffic. A second type of traffic may be transmitted from the gateway AP to the station via at least one relay AP. The first type of traffic may include low-throughput traffic and may be transmitted over a long-range radio link (e.g., 2 GHz band link or sub-1 GHz band link). The second type of traffic may include high-throughput traffic and may be transmitted over at least one short-range radio link (e.g., 5 GHz band link). The gateway AP may receive low-throughput traffic directly from the station and high-throughput traffic from the station via the at least one relay AP.
Abstract:
Systems and methods are disclosed for coordinating operation on multiple frequency bands between two or more multiple concurrent band (MCB) devices. The band switch protocols may include sending information on a second band after a communications link has been established on a first band. The receiving device may treat the transmission of the frame on the new band as a message to switch bands, such that the transmitting and receiving devices may conduct subsequent communications on the new band. Further, the band switch protocols allow for seamless operation over the band switch event. As a result, a frequency band having desired performance characteristics may be selected dynamically.
Abstract:
A method of providing aggregated MAC protocol data unit (AMPDU) duration control in a wireless communication device includes setting an AMPDU duration. Pass/fail statistics are collected for each MPDU of an AMPDU in a time window, W. A packet error rate (PER) difference is calculated between first and last sets of MPDUs for each AMPDU in the window. An average PER difference is calculated across all AMPDUs in the window. When the average PER difference is greater than a first threshold, then the AMPDU duration is decreased. When the difference is less than a second threshold, then the AMPDU duration is increased. When the difference is within the first and the second thresholds, then the method returns to the step of collecting for a next time window. The AMPDU duration can also be adjusted based on detected Doppler and line-of-sight transmissions.
Abstract:
An access point may transmit, to a first wireless device, a message indicating a busy period of the access point. The busy period is a time during which the access point will perform wireless operations with at least a second wireless device different from the first wireless device. During the busy period, the access point may refrain from transmitting from the access point to the first wireless device. The message indicating the busy period may include a duration of the busy period. The message indicating the busy period may be included in a portion of a data transmission to the first wireless device. The first wireless device may enter a low power mode (e.g., sleep operating state) responsive to the busy period.
Abstract:
Methods, devices, and apparatuses are described for wireless communications using a multidimensional algorithm for roaming. In one aspect, an initial set of candidate access points (APs) is produced by a station using a roaming scan. The initial set may be identified based at least in part on an initial metric (e.g., beacon signal strength). A probe signal may be transmitted by the station to at least one of the candidate APs in the initial set and information may be received in response to the probe signals. The station may then identify a reduced set from the initial set based at least in part on the received information, where the reduced set is used to select a target AP. At least one additional metric may be identified and the probe signal may be configured to obtain information corresponding to the additional metrics. This information may be used by the station to select the candidate APs in the reduced set.
Abstract:
Various aspects of the disclosure described herein provide for optimizing rate control during a selection of a communications profile from a set of communications profiles by taking into account effective frame aggregation size as a function of packet error rate (PER). An expected throughput may also be determined for each communications profile and updated after each transmission so that a communications profile having the highest expected throughput may be chosen for a particular frame transmission.
Abstract:
An access point can include an array of antennas and a smart antenna selector. The smart antenna selector is configured to select a subset of antennas from the antenna array for use in multi-user multiple-input multiple-output (MU MIMO) data transmissions. Stations that are communicatively coupled to the access point can be selected for inclusion in a multi-user group based, at least in part, on performance measurements of the stations. Performance measurements are determined directly and indirectly from data transmissions sent in response to sounding packets. Antennas for use in MU MIMO data transmissions are selected for the antenna array based, at least in part, on previous antenna selections used for single user data transmissions.