Abstract:
Certain aspects provide a circuit for in-memory computation. The circuit generally includes a first memory cell, and a first computation circuit. The first computation circuit may include a first switch having a control input coupled to an output of the first memory cell, a second switch coupled between a node of the first computation circuit and the first switch, a control input of the second switch being coupled to a discharge word-line (DCWL), a capacitive element coupled between the node and a reference potential node, a third switch coupled between the node and a read bit-line (RBL), and a fourth switch coupled between the node and an activation (ACT) line.
Abstract:
A magnetic tunnel junction (MTJ) includes a free layer formed from a ferrimagnetic rare-earth-transition-metal (RE-TM) alloy having the net moment dominated by a sublattice moment of a rare-earth (RE) composition of the RE-TM alloy. The MTJ further includes a pinned layer formed from a rare-earth-transition-metal (RE-TM) alloy having the net moment dominated by a sublattice moment of a rare-earth (RE) composition of the RE-TM alloy, the pinned layer comprising one or more amorphous thin insertion layers such that a net magnetic moment of the free layer and the pinned layer is low or close to zero.
Abstract:
In one embodiment, a method of simulating an operation of an artificial neural network on a binary neural network processor includes receiving a binary input vector for a layer including a probabilistic binary weight matrix and performing vector-matrix multiplication of the input vector with the probabilistic binary weight matrix, wherein the multiplication results are modified by simulated binary-neural-processing hardware noise, to generate a binary output vector, where the simulation is performed in the forward pass of a training algorithm for a neural network model for the binary-neural-processing hardware.
Abstract:
A material stack of a synthetic anti-ferromagnetic (SAF) reference layer of a perpendicular magnetic tunnel junction (MTJ) may include an SAF coupling layer. The material stack may also include and an amorphous spacer layer on the SAF coupling layer. The amorphous spacer layer may include an alloy or multilayer of tantalum and cobalt or tantalum and iron or cobalt and iron and tantalum. The amorphous spacer layer may also include a treated surface of the SAF coupling layer.
Abstract:
A perpendicular magnetic tunnel junction (pMTJ) device includes a perpendicular reference layer, a tunnel barrier layer on a surface of the perpendicular reference layer, and a perpendicular free layer on a surface of the tunnel barrier layer. The pMTJ device also includes a dielectric passivation layer on the tunnel barrier layer and surrounding the perpendicular free layer. The pMTJ device further includes a high permeability material on the dielectric passivation layer that is configured to be magnetized by the perpendicular reference layer and to provide a stray field to the perpendicular free layer that compensates for a stray field from the perpendicular reference layer.
Abstract:
A method of reading from and writing to a resistive memory cache includes receiving a write command and dividing the write command into multiple write sub-commands. The method also includes receiving a read command and executing the read command before executing a next write sub-command.
Abstract:
Certain aspects of the present disclosure relate to a gate-all-around (GAA) semiconductor device. One example GAA semiconductor device includes a plurality of nanosheet stack structures disposed vertically above a horizontal plane of a substrate, wherein: each nanosheet stack structure of the plurality of nanosheet stack structures comprises one or more nanosheets; the one or more nanosheets of a first nanosheet stack structure of the plurality of nanosheet stack structures comprise a first semiconductor material; and the one or more nanosheets of a second nanosheet stack structure of the plurality of nanosheet stack structures comprise a second semiconductor material different from the first semiconductor material.
Abstract:
Certain aspects provide a circuit for in-memory computation. The circuit generally includes an in-memory computation array having a plurality of computation circuits, each of the computation circuits being configured to perform a dot product computation. In certain aspects, each of the computation circuits includes a memory cell, a capacitive element, a precharge transistor coupled between an output of the memory cell and the capacitive element, and a read transistor coupled between a read bit line (RBL) and the capacitive element.
Abstract:
An in-process magnetic layer having an in-process area dimension is formed with a chemically damaged region at a periphery. At least a portion of the chemically damaged region is transformed to a chemically modified peripheral portion that is non-ferromagnetic. Optionally, the transforming is by oxidation, nitridation or fluorination, or combinations of the same.
Abstract:
A material stack of a synthetic anti-ferromagnetic (SAF) reference layer of a perpendicular magnetic tunnel junction (MTJ) may include an SAF coupling layer. The material stack may also include and an amorphous spacer layer on the SAF coupling layer. The amorphous spacer layer may include an alloy or multilayer of tantalum and cobalt or tantalum and iron or cobalt and iron and tantalum. The amorphous spacer layer may also include a treated surface of the SAF coupling layer.