Abstract:
The described devices, systems and methods include an electro-static discharge clamp with a latch to prevent false triggering of an electro-static discharge protection circuit in response to fluctuations in a power supply rail.
Abstract:
A device includes a memory, at least two input/output (IO) pins, and slave identifier (ID) selection circuitry. The memory stores a slave ID, which identifies the device to other devices in a serial communication process. The slave ID selection circuitry changes the stored slave ID based on which one of the IO pins is coupled to a supply voltage. By changing the slave ID of the device based on which one of the IO pins is coupled to a supply voltage, a number of devices with otherwise identical slave IDs may change their slave IDs in order to participate in a serial communication process on the same bus. Further, the slave ID of the device may be changed without using an additional IO pin on the device.
Abstract:
A direct current (DC)-DC converter, which includes a charge pump buck power supply and a buck power supply is disclosed. The charge pump buck power supply includes a charge pump buck converter, a first inductive element, and an energy storage element. The charge pump buck converter and the first inductive element are coupled in series between a DC power supply, such as a battery, and the energy storage element. The buck power supply includes a buck converter, a second inductive element, and the energy storage element. The buck converter and the second inductive element are coupled in series between the DC power supply and the energy storage element. As such, the charge pump buck power supply and the buck power supply share the energy storage element.
Abstract:
The described devices, systems and methods include an electro-static discharge clamp with a latch to prevent false triggering of an electro-static discharge protection circuit in response to fluctuations in a power supply rail.
Abstract:
The described devices, systems and methods include an electro-static discharge clamp with a latch to prevent false triggering of an electro-static discharge protection circuit in response to fluctuations in a power supply rail.
Abstract:
Analog-to-digital pulse width modulation circuitry includes thermometer code generator circuitry, clock generator circuitry, delay selection circuitry, and an output stage. The thermometer code generator circuitry is adapted to generate a digital thermometer code based upon a received analog input voltage. The clock generator circuitry is adapted to generate a reference clock and a plurality of delayed clock signals. The delay selection circuitry is connected between the thermometer code generator circuitry and the clock generator circuitry, and is adapted to select one of the delayed clock signals to present to the output stage based upon the generated thermometer code. The selected delayed clock signal is delayed by an amount of time that is proportional to the generated thermometer code. The reference clock signal and the selected delayed clock signal are delivered to the output stage where they are used to generate a pulse width modulated output signal.
Abstract:
A device includes a memory, at least two input/output (IO) pins, and slave identifier (ID) selection circuitry. The memory stores a slave ID, which identifies the device to other devices in a serial communication process. The slave ID selection circuitry changes the stored slave ID based on which one of the IO pins is coupled to a supply voltage. By changing the slave ID of the device based on which one of the IO pins is coupled to a supply voltage, a number of devices with otherwise identical slave IDs may change their slave IDs in order to participate in a serial communication process on the same bus. Further, the slave ID of the device may be changed without using an additional IO pin on the device.
Abstract:
A direct current (DC)-DC converter, which includes a charge pump buck power supply and a buck power supply is disclosed. The charge pump buck power supply includes a charge pump buck converter, a first inductive element, and an energy storage element. The charge pump buck converter and the first inductive element are coupled in series between a DC power supply, such as a battery, and the energy storage element. The buck power supply includes a buck converter, a second inductive element, and the energy storage element. The buck converter and the second inductive element are coupled in series between the DC power supply and the energy storage element. As such, the charge pump buck power supply and the buck power supply share the energy storage element.
Abstract:
Analog-to-digital pulse width modulation circuitry includes thermometer code generator circuitry, clock generator circuitry, delay selection circuitry, and an output stage. The thermometer code generator circuitry is adapted to generate a digital thermometer code based upon a received analog input voltage. The clock generator circuitry is adapted to generate a reference clock and a plurality of delayed clock signals. The delay selection circuitry is connected between the thermometer code generator circuitry and the clock generator circuitry, and is adapted to select one of the delayed clock signals to present to the output stage based upon the generated thermometer code. The selected delayed clock signal is delayed by an amount of time that is proportional to the generated thermometer code. The reference clock signal and the selected delayed clock signal are delivered to the output stage where they are used to generate a pulse width modulated output signal.
Abstract:
The described devices, systems and methods include an electro-static discharge clamp with a latch to prevent false triggering of an electro-static discharge protection circuit in response to fluctuations in a power supply rail.