Abstract:
Embodiments may include methods that include emplacing a degradable material into a wellbore, wherein the degradable material includes a thermoplastic elastomer; contacting the degradable material with an aqueous fluid downhole; and allowing the degradable material to at least partially degrade. In another aspect, methods may include emplacing into a wellbore a tool containing a sealing element thereon, wherein the sealing element contains a degradable material; engaging the sealing element with a downhole surface to establish a seal; contacting the sealing element with an aqueous fluid; and allowing the sealing element to at least partially degrade, thereby disrupting the established seal.
Abstract:
A system for use in treating a wellbore may include a tubular string deployed in the wellbore; and at least one valve assembly connected to the tubular string, each valve assembly for establishing communication between the tubular string and a formation zone, the at least one valve assembly comprises a sleeve having at least one fluid port therein that expands in an axial direction when the valve assembly opens to form a flowpath between an interior of the tubular string and the formation zone.
Abstract:
A system for use in treating a wellbore may include a tubular string deployed in the wellbore; and at least one valve assembly connected to the tubular string, each valve assembly for establishing communication between the tubular string and a formation zone, the at least one valve assembly comprises a sleeve having at least one fluid port therein that expands in an axial direction when the valve assembly opens to form a flowpath between an interior of the tubular string and the formation zone.
Abstract:
A technique that is usable with a well includes communicating an untethered object in a passageway downhole in the well and using a cross-sectional dimension of the object and an axial dimension of the object to select a seat assembly of a plurality of seat assemblies to catch the object to form an obstruction in the well.
Abstract:
Embodiments may generally take the form of a degradable composite structure and a method for controlling the rate of degradation of a degradable composite structure. An example embodiment may take the form of a degradable polymer matrix composite (PMC) including a matrix having: a degradable polymer, a fiber reinforcement, and particulate fillers. The fiber loading is between approximately 10% to 70% by weight and the particulate loading is between approximately 5% to 60%.
Abstract:
Embodiments may generally take the form of a degradable composite structure and a method for controlling the rate of degradation of a degradable composite structure. An example embodiment may take the form of a degradable polymer matrix composite (PMC) including a matrix having: a degradable polymer, a fiber reinforcement, and particulate fillers. The fiber loading is between approximately 10% to 70% by weight and the particulate loading is between approximately 5% to 60%.