Abstract:
A method of manufacturing an electrowetting display device includes a preliminary partition wall pattern formed on a lower substrate on which a pixel electrode of an oxide series and an insulation layer are formed. The preliminary partition wall pattern is disposed along a boundary of the pixel electrode. A water-repellent layer including a self-assembled monolayer having a hydrophobic property is formed on the lower substrate. A portion of the preliminary partition wall pattern and the water-repellent layer formed on the preliminary partition wall pattern are removed to form a partition wall pattern on the insulation layer and to form a water-repellent pattern on the pixel electrode and the insulation layer between partition walls of the partition wall patterns. A fluid layer is formed on the lower substrate on which the water-repellent pattern is formed. The lower substrate and an upper substrate are combined with each other.
Abstract:
A mask may include a circuit area and a pixel area. The circuit area includes a circuit pattern. The pixel area includes a pixel pattern which is extended in a length direction and an assist pattern which is at an end portion of the pixel pattern and adjacent to the circuit area.
Abstract:
A display apparatus includes a substrate; a cavity layer; a display material layer; and a capping layer. The cavity layer includes a plurality of barriers arranged to be spaced apart from one another on the substrate and partitioning pixel regions, and a roof layer connecting upper parts of the plurality of barriers. The cavity layer forms a plurality of cavities including a cavity. The display material layer is formed in the cavity. The capping layer is formed on the cavity layer, the capping layer including a sealant and a plurality of fillers dispersed in the sealant.
Abstract:
A display panel includes; a substrate, and a light blocking structure surrounding an ink filling region on the substrate, the light blocking structure including; a first layer pattern having an ink affinity characteristic disposed on the substrate, and a second layer pattern positioned on the first layer pattern and including an organic material having a light blocking characteristic.
Abstract:
An inkjet print head includes a jet assembly, a printed-circuit board and a barrier coating film. The jet assembly includes a nozzle plate including a jet orifice in a lower surface of the nozzle plate and through which ink is discharged, and an ink transfer pathway inside nozzle plate. The printed-circuit board is combined with the jet assembly. The printed-circuit board includes an integrated circuit and a connection electrode. The barrier coating film includes organic material, a flexible layer and a hydrophobic layer. The barrier coating film covers an inner and an outer surface of the jet assembly, and an outer surface of the printed-circuit board. The barrier coating film exposes the lower surface of the nozzle plate and an outer surface of the connection electrode.
Abstract:
A method of manufacturing a touch screen substrate includes forming a sensing electrode on a substrate, spraying a first ink and a second ink on the substrate including the sensing electrode, where the first ink includes a first solvent and insulation balls having a first diameter and the second ink includes a second solvent and conductive balls having a second diameter smaller than the first diameter, and hardening the first and second inks on the substrate, to fix the insulation balls on the substrate and the conductive balls on the sensing electrode formed on the substrate.
Abstract:
A method of forming a metal pattern is disclosed. In the method, a metal layer is formed on a base substrate. A photoresist composition is coated on the metal layer to form a coating layer. The photoresist composition includes a binder resin, a photo-sensitizer, a mercaptopropionic acid compound and a solvent. The coating layer is exposed to a light. The coating layer is partially removed to form a photoresist pattern. The metal layer is patterned by using the photoresist pattern as a mask.
Abstract:
A display panel includes; a substrate, and a light blocking structure surrounding an ink filling region on the substrate, the light blocking structure including; a first layer pattern having an ink affinity characteristic disposed on the substrate, and a second layer pattern positioned on the first layer pattern and including an organic material having a light blocking characteristic.
Abstract:
An inkjet print head includes a main body including carbon allotrope, and an ink storage configured to store an ink and including a space defined in the main body. A protecting layer is on an inner surface of the main body, and includes parylene. An inorganic layer is on the protecting layer. An organic layer is on the inorganic layer.
Abstract:
An inkjet print head includes a jet assembly which includes a nozzle plate, the nozzle plate including an ink transferring path on a bottom surface of the nozzle plate, and a jet jetting a transferred ink out of the head. A printed circuit substrate is connected to the jet assembly and includes an integrated circuit and a connection electrode. A barrier coating layer covers a surface of the printed circuit substrate and an inner surface and an outer surface of the jet assembly except a bottom surface of the nozzle plate and a surface of the connection electrode of the jet assembly and the printed circuit substrate being connected with each other. The barrier coating layer has a layered structure which includes a flexible layer, a diffusion barrier layer, and a hydrophobic layer.