Abstract:
A display apparatus includes: a substrate; a pixel-circuit layer including a pixel circuit; a via insulating layer on the pixel-circuit layer; a first electrode on the via insulating layer; a pixel-defining layer on the first electrode and exposing a portion of the first electrode; and a second electrode on the first electrode. The pixel-defining layer includes: first pixel-defining layers extending in a first direction and adjacent to each other in a second direction crossing the first direction; and second pixel-defining layers respectively between adjacent ones of the first pixel-defining layers. The second pixel-defining layers are spaced apart from each other, and the via insulating layer has a groove in at least a portion of a region at where the first pixel-defining layers overlaps the via insulating layer.
Abstract:
Provided is a digital exposure device. The digital exposure device includes a stage mounted with a substrate on which a pattern is formed, a first light source, a first head, and a digital micro-mirror device control unit. The stage is configured to move in a scan direction. The first light source is configured to provide a first light. The first head is spaced apart from the stage in a first direction and is configured to receive the first light, to generate at least one spot beam by modulating the first light, and to project the at least one spot beam onto the substrate. The digital micro-mirror device control unit is configured to control an energy of the at least one spot beam generated from the first head to be inversely proportional to a size of the at least spot beam generated from the first head.
Abstract:
A digital exposure device includes: a stage having a substrate seated thereon where a pattern is to be formed and moving in a scan direction; a data modification unit receiving design data and generating modified data by extending the design data; and a digital exposure unit receiving the design data and projecting a light controlled according to the design data on the substrate, wherein the modified data includes intermedial data corresponding to the size difference between an image of the design data and an image of the modified data and some of unit data forming the intermedial data are data obtained when unit data of the design data are shifted in any expansion direction.
Abstract:
Provided is a digital exposure device. The digital exposure device includes a stage mounted with a substrate on which a pattern is formed, a first light source, a first head, and a digital micro-mirror device control unit. The stage is configured to move in a scan direction. The first light source is configured to provide a first light. The first head is spaced apart from the stage in a first direction and is configured to receive the first light, to generate at least one spot beam by modulating the first light, and to project the at least one spot beam onto the substrate. The digital micro-mirror device control unit is configured to control an energy of the at least one spot beam generated from the first head to be inversely proportional to a size of the at least spot beam generated from the first head.
Abstract:
A display apparatus includes a first barrier layer including a first display area, a second display area including transmission areas, and a non-display area, a first base layer on a lower surface of the first barrier layer, and defining a first opening that overlaps the second display area, a second base layer on an upper surface of the first barrier layer, and defining second openings that respectively overlap the transmission areas, a second barrier layer on an upper surface of the second base layer and defining third openings that overlap the second openings, main pixel electrodes over the second barrier layer in the first display area, and auxiliary pixel electrodes over the second barrier layer in the second display area.
Abstract:
A liquid crystal display device includes a first substrate having a display area and a non-display area; a second substrate; a sealing unit between the first and second substrates; the sealing unit surrounding the display area; a liquid crystal layer interposed between the first and second substrates; the liquid crystal layer surrounded by the sealing unit; at least one containment barrier between the sealing unit and the display area. The containment barrier may have a tapering angle different from that of a pattern formed on the display area.
Abstract:
A resin composition includes a polyimide, an ultraviolet (UV) absorber represented by the following Chemical Formula 1 and a remaining N-methyl-2-pyrrolidone, and wherein, in Chemical Formula 1, R1 and R2 are each selected from a hydrogen group, a halogen group, an aliphatic substituent, and an aromatic group.
Abstract:
A photoresist composition includes an alkali soluble resin, a hardening agent, a photo acid generator, and an organic solvent. The photo acid generator may be represented by Formula 1, in which L11 is selected from a single bond, a C1-C10 alkylene group, a C2-C10 alkenylene group, and a C2-C10 alkynylene group; and R11 is selected from a C6-C15 aryl group, or a C6-C15 aryl group with at least one substitutent group selected from a group comprising deuterium, a hydroxyl group, a C1-C10 alkyl group, a C1-C10 alkoxy group, and a C6-C15 aryl group.
Abstract:
A digital exposure device includes: a stage having a substrate seated thereon where a pattern is to be formed and moving in a scan direction; a data modification unit receiving design data and generating modified data by extending the design data; and a digital exposure unit receiving the design data and projecting a light controlled according to the design data on the substrate, wherein the modified data includes intermedial data corresponding to the size difference between an image of the design data and an image of the modified data and some of unit data forming the intermedial data are data obtained when unit data of the design data are shifted in any expansion direction.