Abstract:
A quasi-isotropic antenna includes: a feeder; a loop antenna configured to radiate a first radio wave based on a feeding from the feeder; and a dipole antenna adjacent to the loop antenna, and configured to radiate a second radio wave by resonating based on a resonant-coupling with the loop antenna, wherein a radiation pattern of the first radio wave is orthogonal to a radiation pattern of the second radio wave.
Abstract:
A communication apparatus and a communication method are provided. The communication apparatus includes an antenna configured to receive a wireless signal, an oscillator driven by a driving current and configured to generate an oscillating signal based on the wireless signal, a measurer configured to measure an oscillation degree of the oscillating signal, and an accumulator configured to accumulate a difference between a target value and a measurement value of the oscillation degree. A value of the wireless signal is determined based on a cumulative signal corresponding to the accumulated difference.
Abstract:
An antenna device is disclosed. The antenna device includes a main antenna element and a sub antenna element, the sub antenna element being configured to form a mutual coupling with the main antenna element where a central axis of the sub antenna element forms an angle different from a right angle with a central axis of the main antenna element.
Abstract:
A communication device includes: a coil disposed around a core area of the communication device; a processor disposed in the core area and configured to establish communication with an external device through the coil; and a discrete element disposed on the coil and connected to the processor through a via.
Abstract:
Disclosed are a medical device apparatus, system, and method. A method includes receiving biometric information, by an external device external to a body of a user, of the user from an internal device within the body of the user, and wirelessly transmitting stimulus information configured to specify a stimulus based on the biometric information, and power to the internal device configured to drive the internal device and to apply the stimulus in response to the transmitted stimulus information. A method also includes wirelessly transmitting, from an internal device in a body of a user, biometric information of the user to an external device located outside the body of the user, and wirelessly receiving from the external device stimulus information configured to specify a stimulus, and power configured to drive the internal device and to apply the stimulus to the user in response to the received stimulus information.
Abstract:
A device with wireless communication includes: an input receiver configured to receive an input signal having a carrier frequency; a delay circuit configured to generate a delayed signal by delaying the input signal; and a clock generator configured to generate a clock signal having a clock frequency based on the delayed signal and the input signal.
Abstract:
A frequency tuning apparatus includes: a frequency tuner configured to tune an oscillation frequency of an oscillator based on target information extracted from a mapping table in correspondence to a target frequency, and oscillation information collected from the oscillator; and a frequency compensator configured to compensate for a compensation error between the tuned oscillation frequency and the target frequency based on an offset table.
Abstract:
A packet detection method of a receiver estimates noise power based on received samples and an orthogonal sequence that is orthogonal to a preamble sequence of a transmitter. The method verifies whether a packet is present in a radio channel based on the noise power. Also provided is a transmitter that selects a preamble sequence, modulates a transmission packet, and transmits the modulated transmission packet for reception by such a receiver.
Abstract:
A quasi-isotropic antenna includes: a feeder; a loop antenna configured to radiate a first radio wave based on a feeding from the feeder; and a dipole antenna adjacent to the loop antenna, and configured to radiate a second radio wave by resonating based on a resonant-coupling with the loop antenna, wherein a radiation pattern of the first radio wave is orthogonal to a radiation pattern of the second radio wave.
Abstract:
A near field communication (NFC) transceiver includes a receiver, a transmitter, and a clock recovery circuit. The receiver is configured to recover a reception (RX) frame encoded with power supply information and information transmitted from a reader to a tag. The transmitter is configured to recover a transmission (TX) frame by a subcarrier load modulation scheme for information transmitted from the tag to the reader. The clock recovery circuit is configured to recover a carrier signal of the TX frame as a baseband clock signal of the NFC transceiver through a rail-to-rail boosting.