Abstract:
Methods of forming a dielectric layer are provided. The methods may include introducing oxygen radicals and organic silicon precursors into a chamber to form a preliminary dielectric layer on a substrate. Each of the organic silicon precursors may include a carbon bridge and a porogen such that the preliminary dielectric layer may include carbon bridges and porogens. The methods may also include removing at least some of the porogens from the preliminary dielectric layer to form a porous dielectric layer including the carbon bridges.
Abstract:
A method of manufacturing a semiconductor device is disclosed. The method includes forming a first insulting layer on a substrate, forming a first conductor pattern in the first insulating layer, forming a second insulating layer on the first insulating layer, and forming a second wiring pattern and a contact via in the second insulating layer, wherein a top surface of the first insulating layer is higher than a top surface of the first conductor pattern.
Abstract:
A semiconductor device includes an insulating interlayer on a first region of a substrate. The insulating interlayer has a recess therein and includes a low-k material having porosity. A damage curing layer is formed on an inner surface of the recess. A barrier pattern is formed on the damage curing layer. A copper structure fills the recess and is disposed on the barrier pattern. The copper structure includes a copper pattern and a copper-manganese capping pattern covering a surface of the copper pattern. A diffusion of metal in a wiring structure of the semiconductor device may be prevented, and thus a resistance of the wiring structure may decrease.
Abstract:
A semiconductor may include a first inter metal dielectric (IMD) layer, a first blocking layer on the first IMD layer, a metal wiring and a second blocking layer. The first inter metal dielectric (IMD) layer may be formed on a substrate, the first IMD layer may include a low-k material having a dielectric constant lower than a dielectric constant of silicon oxide. The first blocking layer may be formed on the first IMD layer. The first blocking layer may include an oxide having a dielectric constant higher than the dielectric constant of the first IMD layer. The metal wiring may be through the first IMD layer and the first blocking layer. The second blocking layer may be formed on the metal wiring and the first blocking layer. The second blocking layer may include a nitride. The first and second blocking layers may reduce or prevent from the out gassing, so that a semiconductor device may have good characteristics.
Abstract:
A semiconductor may include a first inter metal dielectric (IMD) layer, a first blocking layer on the first IMD layer, a metal wiring and a second blocking layer. The first inter metal dielectric (IMD) layer may be formed on a substrate, the first IMD layer may include a low-k material having a dielectric constant lower than a dielectric constant of silicon oxide. The first blocking layer may be formed on the first IMD layer. The first blocking layer may include an oxide having a dielectric constant higher than the dielectric constant of the first IMD layer. The metal wiring may be through the first IMD layer and the first blocking layer. The second blocking layer may be formed on the metal wiring and the first blocking layer. The second blocking layer may include a nitride. The first and second blocking layers may reduce or prevent from the out gassing, so that a semiconductor device may have good characteristics.
Abstract:
A semiconductor device may include a plurality of wiring structures spaced apart from each other, a protection pattern including a metal nitride on each of the wiring structures, a spacer on a sidewall of the protection pattern, and an insulating interlayer structure containing the wiring structures and having an air gap between the wiring structures.
Abstract:
A semiconductor device is provided. The semiconductor device includes a first porous interlayer insulating film having a low dielectric constant and including a first region and a second region, a second interlayer insulating film formed on the first interlayer insulating film in the first region, a plurality of first conductive patterns formed in the second interlayer insulating film such that the plurality of first conductive patterns are spaced apart from each other, at least one second conductive pattern formed in the first interlayer insulating film in the second region and air gaps disposed at lateral sides of the plurality of first conductive patterns.