Abstract:
A method and device for measuring blood glucose are provided. The device includes a strip receiving part having a plurality of pins therein, the pins being arranged in such a manner that at least one of the pins contacts at least one electrode formed in a blood glucose measurement strip when the blood glucose measurement strip is inserted into the strip receiving part; and a controller configured to identify a type of the blood glucose measurement strip inserted into the strip receiving part and to control application of a testing voltage configured in response to the identified type of the blood glucose measurement strip to each pin of the strip receiving part.
Abstract:
An electronic device, including a receiver configured to receive signals reflected from an object; and a controller configured to generate information corresponding to at least one tissue layer of the object based on the signals and a plurality of positions of the electronic device, wherein the plurality of positions are determined while the electronic device moves.
Abstract:
Methods and apparatuses are provided for measuring a vital signal by an electronic device. A motion of the electronic device is detected. It is determined whether an amount of the motion is less than or equal to a threshold. At least one vital signal is measured at least once if the amount of the motion is less than or equal to the threshold. A parameter of the at least one vital signal is analyzed. The parameter is converted into vital information.
Abstract:
A method and an apparatus are provided for measuring a change in blood pressure caused by respiration control. A number of respirations per minute is measured based on a heart rate when a respiration exercise begins. Respiration of a subject is induced until the number of respirations per minute reaches a predetermined number of respirations per minute. A pulse transit time is calculated during the respiration exercise, a blood pressure value associated with the pulse transit time is calculated, and the blood pressure value is outputted.
Abstract:
A method and apparatus for readily measuring a blood pressure without using a cuff includes measuring, by a portable blood pressure measuring apparatus, an electrocardiogram signal and a pulse wave signal, transmitting the measured electrocardiogram signal and pulse wave signal to a portable terminal, calculating, by the portable terminal, a Pulse Transit Time (PTT) and a Pulse Wave Velocity (PWV) using the transmitted electrocardiogram signal and the pulse wave signal, and calculating a blood pressure value based on the PTT and the PWV. Therefore, users may readily measure a blood pressure at any time and place and may be provided with a customized blood pressure measurement result.
Abstract:
A bio marker detection device and a method for detecting or generating a bio marker from a plurality of strip sensors are provided. The bio marker detection device includes a close-up lens for detecting an image for the plurality of strip sensors, a transparent frame surrounding the close-up lens to evenly pass light from an outside to the plurality of strip sensors, and a strip sensor holder inlet configured for combining the plurality of strip sensors with the bio marker detection device. The method includes detecting a plurality of bio markers from a plurality of sensors, generating user health information based on the detected plurality of detected bio markers, and displaying the generated user health information.
Abstract:
A bio information measuring device is provided. The bio information measuring device includes a sensor portion and a needle portion including a plurality of needles projecting from a plurality of openings formed in a surface of the sensor portion. The plurality of needles are configured to pierce tissue, wherein the plurality of needles include a biocompatible organic material which includes an enzyme member that reacts with an analysis material and a conductive polymer for transferring an electrical signal generated as a result of a reaction of the enzyme member with the analysis material.
Abstract:
Disclosed is a method for an electronic device. The method may include: acquiring a galvanic skin response; generating a first parameter for a first interval and a second parameter for a second interval based on the galvanic skin response, the second interval being an interval before the first interval; determining a first threshold corresponding to the first interval based on the second parameter; and determining an activity state of the first interval based on the first threshold and the first parameter corresponding to the first interval.
Abstract:
A biosensor is provided. The biosensor includes a lower substrate including an electrode unit, an insulation layer disposed on the lower substrate, a first spacer layer disposed on the insulation layer over the electrode unit, an enzyme unit disposed on the first spacer layer, a second spacer layer disposed on the enzyme unit, such that the enzyme unit is interposed between the first and second spacer layers, and an upper substrate disposed on the second spacer layer. The electrode unit includes a working electrode, and a reference electrode and a counter electrode that surround a periphery of the working electrode, facing the working electrode.
Abstract:
Disclosed is a method and system for analyzing stress and managing stress by using a mobile electronic apparatus and a data management server. The method includes: generating bio-signal pattern information upon periodically receiving a bio-signal from a bio-signal measuring device connected to each of a plurality of unspecified individuals, and forming reference information for stress analysis based on received answers to each of a plurality of questions for checking a stress level; receiving bio-signal pattern information from a bio-signal measuring device connected to a specified user; and determining a stress level corresponding to the bio-signal pattern information of the specified user based on the reference information.