摘要:
The present invention relates to a catalytic conversion process for producing more diesel and propylene, comprising contacting the feedstock oil with a catalyst having a relatively homogeneous activity in a reactor, wherein the reaction temperature, weight hourly space velocity and weight ratio of the catalyst/feedstock oil are sufficient to obtain a reaction product containing from 12 to 60% by weight of a fluid catalytic cracking gas oil relative to the weight of the feedstock oil; the fluid catalytic cracking gas oil is fed into the fluid catalytic cracking gas oil treatment device for further processing. Catalytic cracking, hydrogenation, solvent extraction, hydrocracking and process for producing more diesel are organically combined together, and hydrocarbons such as alkanes, alkyl side chains in the feedstock for catalysis are selectively cracked and isomerized.
摘要:
A catalytic conversion process which comprises catalytic cracking reaction of a hydrocarbon feedstock contacting with a medium pore size zeolite enriched catalyst in a reactor, characterized in that reaction temperature, weight hourly space velocity and catalyst/feedstock ratio by weight are sufficient to achieve a yield of fluid catalytic cracking gas oil between 12% and 60% by weight of said feedstock, wherein said weight hourly space velocity is between 25 h−1 and 100 h−1, said reaction temperature is between 450° C. and 600° C., and said catalyst/feedstock ratio by weight is between 1 and 30. This invention relates to a catalytic conversion process, especially for heavy feedstock oil to produce higher octane gasoline and an enhanced yield of propylene. More particularly, the invention relates to a process to utilize petroleum oil resources efficiently for decreasing the yield of dry gas and coke significantly.
摘要:
A catalytic conversion process to convert inferior feedstock to high quality fuel oil and propylene is disclosed. Inferior feedstock is introduced into first and second reactor zone, wherein first step and second step reactions occur by contacting with catalytic conversion catalyst. Product vapors include fluid catalytic cracking gas oil (FGO) which is introduced into a hydrotreating unit and/or extraction unit to obtain hydrotreated FGO and/or extracted FGO. Hydrotreated FGO and/or extracted FGO returns to the first reactor zone and/or another catalytic cracking unit to obtain propylene and gasoline. The extracted oil of said FGO is rich in double ring aromatics and the raffinate of said FGO is rich in chain alkane and cycloalkane. More particularly, the invention utilizes petroleum oil resources efficiently for decreasing the yield of dry gas and coke significantly.
摘要:
A catalytic conversion process which comprises catalytic cracking reaction of a hydrocarbon feedstock contacting with a medium pore size zeolite enriched catalyst in a reactor, characterized in that reaction temperature, weight hourly space velocity and catalyst/feedstock ratio by weight are sufficient to achieve a yield of fluid catalytic cracking gas oil between 12% and 60% by weight of said feedstock, wherein said weight hourly space velocity is between 25 h−1 and 100 h−1, said reaction temperature is between 450° C. and 600° C., and said catalyst/feedstock ratio by weight is between 1 and 30. This invention relates to a catalytic conversion process, especially for heavy feedstock oil to produce higher octane gasoline and an enhanced yield of propylene. More particularly, the invention relates to a process to utilize petroleum oil resources efficiently for decreasing the yield of dry gas and coke significantly.
摘要:
A catalytic conversion process can convert inferior feedstock to high quality fuel oil and propylene. A inferior feedstock is introduced into first and second reactor zone, wherein the feedstock carry out first step and second step reactions by contacting with catalytic conversion catalyst. Product vapors separate from spent catalyst by gas-solid separation. The spent catalyst is stripped, regenerated by burning off coke and then returns to reactor. The product vapors are introduced into separation system to obtain propylene, gasoline, diesel, fluid catalytic cracking gas oil (FGO) and other products. The FGO is introduced into hydrotreating unit and/or extraction unit to obtain hydrotreated FGO and/or extracted FGO. Said hyrotreated FGO and/or extracted FGO return to the first reactor zone and/or another catalytic cracking unit to obtain propylene and gasoline. The extracted oil of said FGO is rich in double ring aromatics which are good chemical materials. The raffinate of said FGO is rich in chain alkane and cycloalkane which are suitable for catalytic cracking. More particularly, the invention relates to a process to utilize petroleum oil resources efficiently for decreasing the yield of dry gas and coke significantly.
摘要:
A catalytic conversion process for increasing the cetane number barrel of diesel, in which contacting the feedstock oil with a catalytic cracking catalyst having a relatively homogeneous activity containing mainly the large pore zeolites in a catalytic conversion reactor, wherein the reaction temperature, residence time of oil vapors and weight ratio of the catalyst/feedstock oil are sufficient to obtain a reaction product containing from about 12 to about 60% by weight of a fluid catalytic cracking gas oil relative to the weight of the feedstock oil and containing a diesel; the reaction temperature ranges from about 420° C. to about 550° C.; the residence time of oil vapors ranges from about 0.1 to about 5 seconds; the weight ratio of the catalytic cracking catalyst/feedstock oil is about 1-about 10. The fluid catalytic cracking gas oil is fed into other unit for further treatment or is fed back to the initial catalytic conversion reactor. The process allows the maximum production of high cetane number diesel, the cracking catalyst having a coarse particle size distribution can further improve the selectivity of dry gas and coke, and can reduce the breaking tendency of the catalyst and the consumption of the catalyst.
摘要:
A catalytic conversion process uses a catalytic cracking catalyst having a relatively homogeneous activity containing mainly large pore zeolites in a catalytic conversion reactor. The reaction temperature, residence time of oil vapors and weight ratio of the catalyst/feedstock oil are sufficient to obtain a reaction product containing from about 12 to about 60% by weight of a fluid catalytic cracking gas oil relative to the weight of the feed stock oil and containing a diesel. The reaction temperature ranges from about 420° C. to about 550° C. The residence time of oil vapors ranges from about 0.1 to about 5 seconds. The weight ratio of the catalytic cracking catalyst/feedstock is about 1-about 10.
摘要:
The present invention provides a catalytic cracking catalyst, processing method and use thereof. When the catalyst is added into a commercial catalytic cracking unit, it has an initial activity of not higher than 80, preferably not higher than 75, more preferably not higher than 70, a self-balancing time of 0.1-50 h, and an equilibrium activity of 35-60. Said method enables the activity and selectivity of the catalyst in the catalytic cracking unit to be more homogeneous and notably improves the selectivity of the catalytic cracking catalyst, so as to obviously reduce the dry gas and coke yields, to sufficiently use steam and to reduce the energy consumption of the FCC unit.
摘要:
The object of the present invention is to provide a catalyst regeneration process which can improve catalyst selectivity. A first aspect of the invention is characterized in that a spent catalyst from a reactor is introduced into a first fluidized bed regenerator and contacted with an oxygen-containing gas stream and optional steam to carry out a coke combustion reaction, wherein the resultant mixture of the partially regenerated catalyst and flue gas is introduced into a second fluidized bed regenerator and contacted with steam and an optional oxygen-containing gas stream to carry out a further regeneration reaction, and then the regenerated catalyst is introduced into the reactor. A second aspect of the invention is characterized in that a spent catalyst from a reactor is introduced into a fluidized dense bed regenerator and contacted with an oxygen-containing gas stream and steam to carry out a coke combustion reaction, and then the regenerated catalyst is introduced into the reactor. The inventive processes result in a more uniform distribution of the regenerated catalyst activity; due to the exposure of the catalyst to a low temperature for a long time, a part of the heavy metals are buried by the matrix and the remaining are passivated. Thereby dry gas and coke yields decrease sharply when hydrocarbons are subjected to a catalytic cracking reaction on the regenerated catalyst.
摘要:
The object of the present invention is to provide a catalyst regeneration process which can improve catalyst selectivity. A first aspect of the invention is characterized in that a spent catalyst from a reactor is introduced into a first fluidized bed regenerator and contacted with an oxygen-containing gas stream and optional steam to carry out a coke combustion reaction, wherein the resultant mixture of the partially regenerated catalyst and flue gas is introduced into a second fluidized bed regenerator and contacted with steam and an optional oxygen-containing gas stream to carry out a further regeneration reaction, and then the regenerated catalyst is introduced into the reactor. A second aspect of the invention is characterized in that a spent catalyst from a reactor is introduced into a fluidized dense bed regenerator and contacted with an oxygen-containing gas stream and steam to carry out a coke combustion reaction, and then the regenerated catalyst is introduced into the reactor. The inventive processes result in a more uniform distribution of the regenerated catalyst activity; due to the exposure of the catalyst to a low temperature for a long time, a part of the heavy metals are buried by the matrix and the remaining are passivated. Thereby dry gas and coke yields decrease sharply when hydrocarbons are subjected to a catalytic cracking reaction on the regenerated catalyst.