Abstract:
A hemodialysis vascular access device includes a proximal end sized and shaped to sealably couple to a hemodialysis catheter, a movable structure coupled to the proximal end, a fixation structure coupled to the movable region and sized and shaped for fixation on a patient, an elongated sleeve coupled to the fixation structure and sized and shaped for insertion into a patient's vasculature, and a valve at a distal end of the internal lumen. When a hemodialysis catheter is inserted into the device and coupled to the proximal end, distal movement of the proximal end relative to the fixation structure biases a distal end of the hemodialysis catheter from a position inside the elongated sleeve through a valve out of the device and into the patient's blood.
Abstract:
Embodiments of the disclosure include lubricious coatings. In an embodiment the disclosure includes a lubricious coating for a medical device including first and second coated layers. The first coated layer is between the second coated layer and the device surface and includes a vinyl pyrrolidone polymer and a photo reactive group. The second coated layer is in direct contact with the first coated layer and is a top coating that includes an acrylic acid polymer. The second coated layer can optionally include photoreactive groups. The coating was found to have a very low number of particulates (e.g., 10 μm or greater) which is very desirable for in vivo use.
Abstract:
Embodiments of the disclosure include lubricious coatings. In an embodiment the disclosure includes a lubricious coating for a medical device including first and second coated layers. The first coated layer is between the second coated layer and the device surface and includes a vinyl pyrrolidone polymer and a photo reactive group. The second coated layer is in direct contact with the first coated layer and is a top coating that includes an acrylic acid polymer. The second coated layer can optionally include photoreactive groups. The coating was found to have a very low number of particulates (e.g., 10 μm or greater) which is very desirable for in vivo use.
Abstract:
Embodiments of the disclosure include lubricious coatings. In an embodiment the disclosure includes a lubricious coating for a medical device including first and second coated layers. The first coated layer is between the second coated layer and the device surface and includes a vinyl pyrrolidone polymer and a photo reactive group. The second coated layer is in direct contact with the first coated layer and is a top coating that includes an acrylic acid polymer. The second coated layer can optionally include photoreactive groups. The coating was found to have a very low number of particulates (e.g., 10 μm or greater) which is very desirable for in vivo use.
Abstract:
A hemodialysis vascular access device includes a proximal end sized and shaped to sealably couple to a hemodialysis catheter, a movable structure coupled to the proximal end, a fixation structure coupled to the movable region and sized and shaped for fixation on a patient, an elongated sleeve coupled to the fixation structure and sized and shaped for insertion into a patient's vasculature, and a valve at a distal end of the internal lumen. When a hemodialysis catheter is inserted into the device and coupled to the proximal end, distal movement of the proximal end relative to the fixation structure biases a distal end of the hemodialysis catheter from a position inside the elongated sleeve through a valve out of the device and into the patient's blood.
Abstract:
A hemodialysis vascular access device includes a proximal end sized and shaped to sealably couple to a hemodialysis catheter, a movable structure coupled to the proximal end, a fixation structure coupled to the movable region and sized and shaped for fixation on a patient, an elongated sleeve coupled to the fixation structure and sized and shaped for insertion into a patient's vasculature, and a valve at a distal end of the internal lumen. When a hemodialysis catheter is inserted into the device and coupled to the proximal end, distal movement of the proximal end relative to the fixation structure biases a distal end of the hemodialysis catheter from a position inside the elongated sleeve through a valve out of the device and into the patient's blood.
Abstract:
Embodiments of the invention include drug delivery coatings and devices including the same. In an embodiment, a drug delivery coating is included herein having a base polymeric layer, the base polymeric layer including a hydrophilic polyether block amide copolymer and having a hydrophilic surface. The drug delivery coating can further include a therapeutic agent layer forming an exterior surface the drug delivery coating, the therapeutic agent layer contacting the hydrophilic surface of the base polymeric layer and having a composition different than the base polymeric layer, the therapeutic agent layer including a particulate hydrophobic therapeutic agent and a cationic agent. Other embodiments are also included herein.
Abstract:
Embodiments of the invention include coating apparatuses and related methods. In an embodiment, the invention includes a coating apparatus. The coating apparatus can include a motor, a rotating contact member, a fluid applicator, a fluid pump, and a base member. The fluid applicator can include an orifice. The rotating contact member can be configured to rotate around a device to be coated that does not rotate. The rotating contact member can be configured to move along the lengthwise axis of a device to be coated. In an embodiment, the invention includes a method of coating a medical device. The method of coating a medical device can include a rotating a contact member around the outer diameter of a non-rotating medical device, applying a coating solution to the outer diameter of the non-rotating medical device at a position adjacent to the contact member, and moving at least one of the contact member and the non-rotating medical device with respect to one another so that the contact member moves with respect to the lengthwise axis of the non-rotating medical device. Other embodiments are also included herein.
Abstract:
Embodiments of the disclosure include lubricious coatings. In an embodiment the disclosure includes a lubricious coating for a medical device including first and second coated layers. The first coated layer is between the second coated layer and the device surface and includes a vinyl pyrrolidone polymer and a photo reactive group. The second coated layer is in direct contact with the first coated layer and is a top coating that includes an acrylic acid polymer. The second coated layer can optionally include photoreactive groups. The coating was found to have a very low number of particulates (e.g., 10 μm or greater) which is very desirable for in vivo use.
Abstract:
Embodiments of the invention include drug delivery coatings and devices including the same. In an embodiment, a drug delivery coating is included herein having a base polymeric layer, the base polymeric layer including a hydrophilic polyether block amide copolymer and having a hydrophilic surface. The drug delivery coating can further include a therapeutic agent layer forming an exterior surface the drug delivery coating, the therapeutic agent layer contacting the hydrophilic surface of the base polymeric layer and having a composition different than the base polymeric layer, the therapeutic agent layer including a particulate hydrophobic therapeutic agent and a cationic agent. Other embodiments are also included herein.