Abstract:
A system and method for performing location specific processing of a workpiece is described. The method includes placing a microelectronic workpiece in a beam processing system, selecting a beam scan size for a beam scan pattern that is smaller than a dimension of the microelectronic workpiece, generating a processing beam, and processing a target region of the microelectronic workpiece by irradiating the processing beam along the beam scan pattern onto the target region within the beam scan size selected for processing the microelectronic workpiece.
Abstract:
A method for correcting a surface profile on a substrate is described. In particular, the method includes receiving a substrate having a heterogeneous layer composed of a first material and a second material, wherein the heterogeneous layer has an initial upper surface exposing the first material and the second material, and defining a first surface profile across the substrate. The method further includes setting a target surface profile for the heterogeneous layer, selectively removing at least a portion of the first material using a gas cluster ion beam (GCIB) etching process, and recessing the first material beneath the second material, and thereafter, selectively removing at least a portion of the second material to achieve a final upper surface exposing the first material and the second material, and defining a second surface profile, wherein the second surface profile is within a pre-determined tolerance of the target surface profile.
Abstract:
A system and method for performing location specific processing of a workpiece is described. The method includes placing a microelectronic workpiece in a beam processing system, selecting a beam scan size for a beam scan pattern that is smaller than a dimension of the microelectronic workpiece, generating a processing beam, and processing a target region of the microelectronic workpiece by irradiating the processing beam along the beam scan pattern onto the target region within the beam scan size selected for processing the microelectronic workpiece.
Abstract:
A method for correcting a surface profile on a substrate is described. In particular, the method includes receiving a substrate having a heterogeneous layer composed of a first material and a second material, wherein the heterogeneous layer has an initial upper surface exposing the first material and the second material, and defining a first surface profile across the substrate. The method further includes setting a target surface profile for the heterogeneous layer, selectively removing at least a portion of the first material using a gas cluster ion beam (GCIB) etching process, and recessing the first material beneath the second material, and thereafter, selectively removing at least a portion of the second material to achieve a final upper surface exposing the first material and the second material, and defining a second surface profile, wherein the second surface profile is within a pre-determined tolerance of the target surface profile.