Abstract:
The present invention provides a capacitor having a first structure made of a metal layer and a second structure made of the same metal layer and a dielectric layer between the first and the second metal structure, wherein the dielectric layer has a relative permittivity greater than 4, in particular greater than 6. It also provides a monolithically integrated circuit including such a capacitor and optionally other components. A method of manufacturing such a capacitor is also provided.
Abstract:
In some examples, a gallium nitride (GaN)-based transistor, comprises a substrate; a GaN layer supported by the substrate; an aluminum nitride gallium (AlGaN) layer supported by the GaN layer; a p-doped GaN structure supported by the AlGaN layer; and multiple p-doped GaN blocks supported by the AlGaN layer, each of the multiple p-doped GaN blocks physically separated from the remaining multiple p-doped GaN blocks, wherein first and second contours of a two-dimensional electron gas (2DEG) of the GaN-based transistor are at an interface of the AlGaN and GaN layers.
Abstract:
One example provides an enhancement-mode High Electron Mobility Transistor (HEMT) includes a substrate, a Group IIIA-N active layer over the substrate, a Group IIIA-N barrier layer over the active layer, and at least one isolation region through the barrier layer to provide an isolated active area having the barrier layer on the active layer. A gate stack is located between source and drain contacts to the active layer. A tunnel diode in the gate stack includes an n-GaN layer on an InGaN layer on a p-GaN layer located on the barrier layer.
Abstract:
The present invention provides a capacitor having a first structure made of a metal layer and a second structure made of the same metal layer and a dielectric layer between the first and the second metal structure, wherein the dielectric layer has a relative permittivity greater than 4, in particular greater than 6. It also provides a monolithically integrated circuit including such a capacitor and optionally other components. A method of manufacturing such a capacitor is also provided.
Abstract:
The present invention provides a capacitor having a first structure made of a metal layer and a second structure made of the same metal layer and a dielectric layer between the first and the second metal structure, wherein the dielectric layer has a relative permittivity greater than 4, in particular greater than 6. It also provides a monolithically integrated circuit including such a capacitor and optionally other components. A method of manufacturing such a capacitor is also provided.
Abstract:
A semiconductor device with a substrate, a low defect layer formed in a fixed position relative to the substrate, and a barrier layer comprising III-N semiconductor material formed on the low-defect layer and forming an electron gas in the low-defect layer. The device also has a source contact, a drain contact, and a gate contact for receiving a potential, the potential for adjusting a conductive path in the electron gas and between the source contact and the drain contact. Lastly, the device has a one-sided PN junction between the barrier layer and the substrate.
Abstract:
A semiconductor device includes a depletion mode GaN FET and an integrated driver/cascode IC. The integrated driver/cascode IC includes an enhancement mode cascoded NMOS transistor which is connected in series to a source node of the GaN FET. The integrated driver/cascode IC further includes a driver circuit which conditions a gate input signal and provides a suitable digital waveform to a gate node of the cascoded NMOS transistor. The cascoded NMOS transistor and the driver circuit are formed on a same silicon substrate.
Abstract:
An integrated silicon and III-N semiconductor device may be formed by growing III-N semiconductor material on a first silicon substrate having a first orientation. A second silicon substrate with a second, different, orientation has a release layer between a silicon device film and a carrier wafer. The silicon device film is attached to the III-N semiconductor material while the silicon device film is connected to the carrier wafer through the release layer. The carrier wafer is subsequently removed from the silicon device film. A first plurality of components is formed in and/or on the silicon device film. A second plurality of components is formed in and/or on III-N semiconductor material in the exposed region. In an alternate process, a dielectric interlayer may be disposed between the silicon device film and the III-N semiconductor material in the integrated silicon and III-N semiconductor device.
Abstract:
A semiconductor device includes a depletion mode GaN FET and an integrated driver/cascode IC. The integrated driver/cascode IC includes an enhancement mode cascoded NMOS transistor which is connected in series to a source node of the GaN FET. The integrated driver/cascode IC further includes a driver circuit which conditions a gate input signal and provides a suitable digital waveform to a gate node of the cascoded NMOS transistor. The cascoded NMOS transistor and the driver circuit are formed on a same silicon substrate.
Abstract:
A semiconductor device is formed with a stepped field plate over at least three sequential regions in which a total dielectric thickness under the stepped field plate is at least 10 percent thicker in each region compared to the preceding region. The total dielectric thickness in each region is uniform. The stepped field plate is formed over at least two dielectric layers, of which at least all but one dielectric layer is patterned so that at least a portion of a patterned dielectric layer is removed in one or more regions of the stepped field plate.