METHOD FOR PREPARING COMPOUND SEMICONDUCTOR CRYSTAL BY COMBINING CONTINUOUS LEC AND VGF AFTER INJECTION SYNTHESIS

    公开(公告)号:US20240209545A1

    公开(公告)日:2024-06-27

    申请号:US18294938

    申请日:2021-12-08

    IPC分类号: C30B27/02 C30B29/40

    CPC分类号: C30B27/02 C30B29/40

    摘要: The present invention discloses a method for preparing a compound semiconductor crystal by continuous LEC and VGF combination after injection synthesis, including: step A, vacuuming a system for preparing compounds and filling the system with an inert gas; step B, heating to melt the metallic raw material and boron oxide I in a synthesis crucible; step C, heating to melt boron oxide II, and moving the synthesis injection system downwards to move the end of the injection synthesis tube until the metallic raw material in the crucible is synthesized into a first melt; step D, slowly reducing the pressure inside the VGF crucible so that the first melt enters the VGF crucible to form a second melt; etc. In the present invention, the upper part is a VGF growth part and the lower part is a synthesis part; the synthesis part entering the VGF growth part by reverse sucking, while the VGF growth part is configured with a seed crystal rod and an observation system, and also can be subjected to gas control. At the beginning, LEC seeding and diameter enlarging at a high temperature gradient are implemented, and then the grown crystal is used for VGF crystal growth at a low temperature gradient, so that a high-quality crystal with low defects can be prepared with high yield.

    Polishing Device for Indium Phosphide Substrate, and Polishing Process

    公开(公告)号:US20240035192A1

    公开(公告)日:2024-02-01

    申请号:US17797395

    申请日:2021-07-05

    IPC分类号: C25F7/00 C25F3/30

    CPC分类号: C25F7/00 C25F3/30

    摘要: A polishing device for an indium phosphide substrate and a polishing process are provided, which belong to the technical field of polishing of indium phosphide. The polishing device includes an electrolyzer, and further includes an anode disc supporting rod positioned at a center position of a bottom of the electrolyzer by virtue of an anode lifting mechanism; an anode disc hinged to an upper end of the anode disc supporting rod; a cathode disc supporting rod positioned above the anode disc by virtue of a cathode lifting mechanism; a cathode disc arranged at a lower end of the cathode disc supporting rod; a graphite electrode plate arranged on the anode disc by virtue of a connection mechanism; a group of planet gears arranged on an upper end surface of the graphite electrode plate by virtue of an intermediate driving mechanism; an anode rotation driving mechanism connected to the intermediate driving mechanism; a cathode rotation driving mechanism connected to the cathode disc supporting rod; and a polishing direct current (DC) power supply respectively connected to contacts of the anode disc supporting rod and the cathode disc supporting rod by virtue of wires. By improving the structure of the device and the manufacturing process, a requirement for the environment in the polishing process of indium phosphide is greatly reduced, and electrochemical and mechanical dual-polishing is achieved.

    Rocking type seed crystal surface corrosion, cleaning and drying device and process method

    公开(公告)号:US20230038976A1

    公开(公告)日:2023-02-09

    申请号:US17880597

    申请日:2022-08-03

    IPC分类号: C30B35/00 C30B33/10 C30B29/40

    摘要: A rocking type seed crystal surface corrosion, cleaning and drying device and a process method belong to the technical field of semiconductor crystal growth, comprising a corrosion tank and a matched corrosion tank cover, a seed crystal support platform arranged at a middle position of the bottom of the corrosion tank, and a high-purity hot nitrogen introduction short straight pipe, an corrosive liquid introduction short straight pipe, a deionized water introduction short straight pipe and an overflow liquid discharge short straight pipe matched with and arranged at both sides of the corrosion tank, wherein free ends of the high-purity hot nitrogen introduction short straight pipe, the corrosive liquid introduction short straight pipe and the deionized water introduction short straight pipe are all provided with switch stop valves; the device further comprises a rocking mechanism provided at the bottom of the corrosion tank; and the seed crystal support platform comprises a support frame symmetrically distributed on both sides of the vertical central axis of the corrosion tank and positioned at the bottom of the corrosion tank, a seed crystal support wheel mounted on an upper end of the support frame via a rotating shaft, and a matched seed crystal support wheel limiting mechanism. Adequate corrosion can be performed on the entire seed crystal surface, and the cleaning and drying processes of the seed crystal in the subsequent process can be combined organically to avoid secondary contamination of the seed crystal in the subsequent process.

    APPARATUS FOR PREPARING LARGE-SIZE SINGLE CRYSTAL

    公开(公告)号:US20220074073A1

    公开(公告)日:2022-03-10

    申请号:US17415962

    申请日:2020-09-25

    IPC分类号: C30B33/06

    摘要: Disclosed is an apparatus for preparing a large-size single crystal, which relates to the field of semiconductor material preparation, and more particularly, to an apparatus for preparing a large-size single crystal from a plurality of small-size single crystals by connecting them in solid states. The apparatus includes a hydrocooling furnace, a solid connection chamber hermetically disposed in the hydrocooling furnace, and combined fixtures provided in the solid connection chamber, wherein a plurality of crystal pieces are fixed by the combined fixtures, a top column or a stress block is used for pressing the crystal piece through the combined fixtures, a heating wire surrounding the solid connection chamber is provided in the hydrocooling furnace, a vacuum tube is communicated with the solid connection chamber, and a thermocouple is disposed close to the combined fixtures. The present disclosure is advantageous in that: 1, single crystal pieces with a small size can be connected and prepared into a single crystal with a larger size, 2, in the preparation process, the problems in the conventional single crystal growth process, such as twinning and polycrystallization, can be excluded from consideration, 3, the equipment is simple, and 4, preparation of single crystals with any size is possible theoretically.

    Device and Method for Continuous VGF Crystal Growth through Reverse Injection Synthesis

    公开(公告)号:US20210285123A1

    公开(公告)日:2021-09-16

    申请号:US16627919

    申请日:2018-12-21

    IPC分类号: C30B11/00 C30B27/00 C30B29/40

    摘要: The invention discloses a device and a method for continuous VGF crystal growth through reverse injection synthesis, relating to a device for preparing a semiconductor crystal and growing a single crystal, in particular to a method and a device for continuously growing the crystal in situ by using a VGF method and reverse injection synthesis. The device includes a furnace body, a crucible, a heat preservation system, a heating system, a temperature control system and an gas pressure regulation system, wherein the crucible is arranged in the furnace body, has a synthesis unit at its upper part, and has a crystal growth unit and a seed crystal unit at its lower part, and the synthesis unit is communicated with the crystal growth unit through capillary pores. Red phosphorus and boron oxide are put into the growth unit, indium and boron oxide are put into the synthesis unit, solid seed crystals are put into the seed crystal unit, and temperature and pressure are controlled to accomplish material synthesis and in-situ crystal growth. According to the invention, the capillary pores are used, the temperature and the pressure are controlled, the phosphorus bubbles rise to the indium melt in the material synthesis stage, rendering a full fusion of the two substances, and after the phosphorus gasification, the indium-phosphorus melt drops into the growth unit to finish the in-situ growth of the crystal.

    Growth Device and Method for Low-Stress Crystals

    公开(公告)号:US20230069057A1

    公开(公告)日:2023-03-02

    申请号:US17797063

    申请日:2021-07-05

    IPC分类号: C30B15/00

    摘要: A growth device and method for low-stress crystals are provided, which relate to the field of preparation of crystals, in particular to a device and method for preparing low-stress and low-defect crystals by using a pulling method. The growth device includes a furnace body; a crucible and a heating and insulation system which are arranged at a bottom of the furnace body; a crystal pulling mechanism, and a quartz observation window; the device further includes a liftable heating mantle mechanism including a heating mantle body, a heating mantle supporting component, a heating wire arranged around the heating mantle body, and a heating mantle lifting mechanism. The method includes: after crystals are pulled out of a melt, covering the crystals with a liftable heating mantle mechanism. By the use of the present invention, a temperature gradient inside the crystals in a crystal growth process and in a cooling process after the crystals are pulled can be reduced, thereby reducing the crystal stress, reducing defects, and avoiding the crystals from being cracked; and at the same time, the temperature gradient in the melt is maintained, thereby guaranteeing a stable crystal growth process and ensuring the yield of the crystals.