摘要:
Provided is an organic-inorganic hybrid nanofiber including an inorganic semiconductor material in a nanoparticle or nanocrystal state, and a conductive polymer including the inorganic semiconductor material and having a lower thermal conductivity than the inorganic semiconductor material. The inorganic semiconductor material and the conductive polymer are arranged in a composite material type to have a thermoelectric property. Thus, the organic-inorganic hybrid nanofiber can be applied to a low-priced thermoelectric device having relatively high thermoelectric conversion efficiency.
摘要:
Provided is a thermoelectric array including a plurality of thermoelectric elements arranged in m rows and n columns (each of m and n is an integer equal to or more than 1), each thermoelectric element including a heat absorption layer, a first heat sink layer, a second heat sink layer, a first-conductivity-type leg, and a second-conductivity-type leg formed on the same plane. The heat absorption layers of the thermoelectric elements adjacently disposed in a row or column direction are disposed adjacent to each other, and the first and second heat sink layers of the adjacent thermoelectric elements are disposed adjacent to each other. In this case, thermal interference between adjacent thermoelectric elements may be minimized, thereby obtaining a thermoelectric array having a high figure of merit.
摘要:
Provided are a thermoelectric device using radiant heat as a heat source and a method of fabricating the same. In the thermoelectric device, an anti-reflection layer formed on a heat absorption layer causes as much radiant light as possible to be absorbed by the heat absorption layer without being reflected to the outside so that the radiant heat absorption efficiency can be improved. Also, in the thermoelectric device, an insulating layer formed on a heat dissipation layer and a first reflection layer formed on the insulating layer can prevent external radiant heat from being absorbed by the heat dissipation layer, and as much radiant heat transferred to the heat dissipation layer as possible can be dissipated away from the heat dissipation layer by a second reflection layer thermally connected with the heat dissipation layer so that the radiant heat emission efficiency can be improved.
摘要:
Disclosed are a thermoelectric device based on silicon nanowires including: a substrate; a silicon heat absorbing part absorbing heat, a silicon nanowire leg transferring heat, and a silicon heat releasing part releasing heat, which are formed on the substrate; and an insulating film with at least one or more holes, which is formed on the substrate including the silicon heat absorbing part, the silicon nanowire leg, and the silicon heat releasing part, and a method for manufacturing the same.
摘要:
A white light emitting device including: a blue light emitting diode chip having a dominant wavelength of 443 to 455 nm; a red phosphor disposed around the blue light emitting diode chip, the red phosphor excited by the blue light emitting diode chip to emit red light; and a green phosphor disposed around the blue light emitting diode chip, the green phosphor excited by the blue light emitting diode chip to emit green light, wherein the red light emitted from the red phosphor has a color coordinate falling within a space defined by four coordinate points (0.5448, 0.4544), (0.7079, 0.2920), (0.6427, 0.2905) and (0.4794, 0.4633) based on the CIE 1931 chromaticity diagram, and the green light emitted from the green phosphor has a color coordinate falling within a space defined by four coordinate points (0.1270, 0.8037), (0.4117, 0.5861), (0.4197, 0.5316) and (0.2555, 0.5030) based on the CIE 1931 color chromaticity diagram.
摘要:
Provided are a nonvolatile memory device and a method of fabricating the same, in which a phase-change layer is formed using a solid-state reaction to reduce a programmable volume, thereby lessening power consumption. The device includes a first reactant layer, a second reactant layer formed on the first reactant layer, and a phase-change layer formed between the first and second reactant layers due to a solid-state reaction between a material forming the first reactant layer and a material forming the second reactant layer. The phase-change memory device consumes low power and operates at high speed.
摘要:
Disclosed is a medical tissue extraction instrument, which can allow an inspector to accurately locate a fine needle at a desired tissue extraction position without any need for assistance while assuring stable tissue extraction. The medical tissue extraction instrument includes a tissue extraction controller to control the pressure of a suction tube connected to a fine needle during extraction of tissue. The tissue extraction controller includes a suction pressure generator taking the form of a footboard and adapted to control a suction operation of the suction tube by being pushed downward.
摘要:
There is provided a light emitting diode package and a method of manufacturing the same. A light emitting diode package according to an aspect of the invention may include: an LED chip; a body part having the LED chip mounted thereon; a pair of reflective parts extending from the body part to face each other while interposing the LED chip therebetween, and reflecting light emitted from the LED chip; and a molding part provided between the pair of reflective parts to encapsulate the LED chip and having a top surface whose central region is curved inwards.
摘要:
A phase-change memory device in which a phase-change material layer has a multilayered structure with different compositions and a method of fabricating the same are provided. The phase-change memory device includes a first electrode layer formed on a substrate, a heater electrode layer formed on the first electrode layer, an insulating layer formed on the heater electrode layer and having a pore partially exposing the heater electrode layer, a phase-change material layer formed to fill the pore and partially contacting the heater electrode layer, and a second electrode layer formed on the phase-change material layer. The main operating region functioning as a memory operating region is formed of a Ge2Sb2+xTe5 phase-change material to ensure the stability of a memory operation, and simultaneously, the subsidiary regions formed of a Ge2Sb2Te5 phase-change material are disposed respectively on and under the Ge2Sb2+xTe5 main operating region to prevent leakage of thermal energy through an electrode, thereby reducing power consumption.
摘要:
An embedded memory required for a high performance, multifunction SOC, and a method of fabricating the same are provided. The memory includes a bipolar transistor, a phase-change memory device and a MOS transistor, adjacent and electrically connected, on a substrate. The bipolar transistor includes a base composed of SiGe disposed on a collector. The phase-change memory device has a phase-change material layer which is changed from an amorphous state to a crystalline state by a current, and a heating layer composed of SiGe that contacts the lower surface of the phase-change material layer.