摘要:
The present invention discloses a method of synthesizing an aliphatic polymer having a ketone group in the main chain thereof, in which polyhydric alcohol (for example, glycerin) as a raw material is polymerized in the presence of a catalyst, and a method of preparing a composition containing an aliphatic polymer having a ketone group in the main chain thereof, including such a process.
摘要:
The invention provides an aliphatic polymer having a ketone group and ether bonding in its main chain, characterized by comprising structural units represented by the Formula (1) and by the Formula (2). In the Formulae (1) and (2), Ra and Rb each independently represents a substituted or unsubstituted divalent aliphatic hydrocarbon group. Rc represents a substituted or unsubstituted divalent aliphatic hydrocarbon group having ether bonding in a terminal thereof, or a single bond. n1 represents an integer of 1 or more. n2 represents an integer of 0 or more. And, n1+n2 is in a range of 2 to 1000. The polymer preferably contains ether bonds and ketone groups in a ratio of 0.01 to 100. The polymer can be substantially comprised of a structural unit represented by the Formula (1) as a repeating unit. A resin composition containing as a component structural units represented by the Formula (1) is also provided. The resin composition may further comprise an electrically conductive powder.
摘要:
An electron beam generator device includes a base body having a conductive surface and a electron-emission electrode having a carbon nanotube structure on the conductive surface of the substrate. The carbon nanotube structure constitutes a network structure which has plural carbon nanotubes and a crosslinked part including a chemical bond of plural functional groups. The chemical bond connects one end of one of the carbon nanotubes to another one of the carbon nanotubes. A method for producing an electron beam generator device, includes applying plural carbon nanotubes each having a functional group onto a conductive surface of a base body, and crosslinking the functional groups with a chemical bond to form a crosslinked part, thereby forming a carbon nanotube structure constituting a network structure having plural carbon nanotubes electrically connected to each other.
摘要:
Provided are a carbon nanotube structure more excellent in electric conductivity, thermal conductivity, and mechanical strength, and a method of manufacturing the carbon nanotube structure. A carbon nanotube composite structure is characterized by including: a first carbon nanotube structure in which functional groups bonded to plural carbon nanotubes are chemically bonded and mutually cross-linked to construct a network structure; and a second carbon nanotube structure in which functional groups bonded to plural carbon nanotubes are chemically bonded and mutually cross-linked to construct a network structure, the second carbon nanotube structure being combined with the network structure of the first carbon nanotube structure.
摘要:
Provided are a carbon nanotube structure more excellent in electric conductivity, thermal conductivity, and mechanical strength, and a method of manufacturing the carbon nanotube structure. A carbon nanotube composite structure is characterized by including: a first carbon nanotube structure in which functional groups bonded to plural carbon nanotubes are chemically bonded and mutually cross-linked to construct a network structure; and a second carbon nanotube structure in which functional groups bonded to plural carbon nanotubes are chemically bonded and mutually cross-linked to construct a network structure, the second carbon nanotube structure being combined with the network structure of the first carbon nanotube structure.
摘要:
An electron beam generator device includes a base body having a conductive surface and a electron-emission electrode having a carbon nanotube structure on the conductive surface of the substrate. The carbon nanotube structure constitutes a network structure which has plural carbon nanotubes and a crosslinked part including a chemical bond of plural functional groups. The chemical bond connects one end of one of the carbon nanotubes to another one of the carbon nanotubes.A method for producing an electron beam generator device, includes applying plural carbon nanotubes each having a functional group onto a conductive surface of a base body, and crosslinking the functional groups with a chemical bond to form a crosslinked part, thereby forming a carbon nanotube structure constituting a network structure having plural carbon nanotubes electrically connected to each other.
摘要:
Provided are a gas decomposing unit and an electrode for a fuel cell capable of stably supporting a gas decomposing catalyst. A gas decomposing unit and an electrode for a fuel cell each including: a carbon nanotube structure having a mesh structure in which functional groups bonded to plural carbon nanotubes are chemically bonded to mutually cross-link the plural carbon nanotubes; and a gas decomposing catalyst supported on the carbon nanotube structure. A method of manufacturing a gas decomposing unit characterized by including: an applying step of applying, to the surface of a substrate, a solution containing plural carbon nanotubes to which functional groups are bonded; a cross-linking step of chemically bonding the functional groups to build a mesh structure in which the plural carbon nanotubes mutually cross-link; and a supporting step of forming the carbon nanotube structure supporting a gas decomposing catalyst.
摘要:
The present invention provides an electronic device including a transporting layer which involves a low environmental load and which is excellent in semiconductor characteristics by means of a configuration having, on the surface of a base body, at least a transporting layer constituted by a carbon nanotube structure layer having a network structure in which a plurality of carbon nanotubes mutually cross-link. Also, provided is a method of manufacturing the same.
摘要:
Provided is a nanotube-polymer composite which can effectively utilize characteristics of a carbon nanotube structure. The composite includes a carbon nanotube structure and a polymer, in which: the carbon nanotube structure has a network structure constructed by mutually cross-linking functional groups bonded to multiple carbon nanotubes through chemical bonding of the functional groups together; and the polymer is filled in the network structure. Also provided is a method of manufacturing a composite which includes the steps of: supplying a base body surface with a solution containing multiple carbon nanotubes to which multiple functional groups are bonded; mutually cross-linking the multiple carbon nanotubes through chemical bonding of the multiple functional groups together to construct a network structure constituting a carbon nanotube structure; impregnating the network structure with a polymer liquid forming a polymer; and combining the carbon nanotube structure and the polymer by curing the polymer liquid.
摘要:
Provided is a carbon nanotube structure of homogeneous characteristics which is composed of at least a carbon nanotube structure layer where plural carbon nanotubes are cross-linked to one another to form a mesh structure on a surface of a base body. Also provided is a method of manufacturing the carbon nanotube structure which includes: an application step of applying a liquid solution that contains carbon nanotubes having functional groups and an additive for forming chemical bonds between the functional groups to a surface of a base body; and a cross-linking step for forming a carbon nanotube structure layer that has a mesh structure composed of the plural carbon nanotubes that are cross-linked to one another by chemical bonds formed among the functional groups.