Abstract:
An operator detection system for sensing the presence of an operator at an operator control station of a turf-care vehicle is provided. The system comprises at least one operator presence sensor structured and operable to sense whether an operator is present at the operator control station and a controller communicatively connected to the operator presence sensor(s). The controller structured and operable to determine whether each of the operator presence sensor(s) sense(s) that an operator is present at the operator control station, enable operation of an engine of the vehicle and at least one cutting unit of the vehicle when one or more operator presence sensor(s) sense(s) that the operator is present at the operator control station, and disable operation of the engine and at least one cutting unit when one or more operator presence sensor(s) sense(s) that the operator is not present at the operator control station.
Abstract:
A power generation device for a utility vehicle having a battery source capable of storing electrical energy and selectively outputting electrical energy and selectively receiving electrical energy, a logic/driver module operably coupled to the battery source and capable of outputting power to a drive system of the utility vehicle, an internal combustion engine capable of outputting a mechanical driving force in response to a control input from the logic/driver module, and an AC induction motor operably coupled to the internal combustion engine via a coupler and electrically coupled to the logic/driver module. The AC induction motor is capable of operating as a generator in response to the mechanical driving force of the internal combustion engine, thereby outputting electrical energy to the logic/driver module, and further is capable of operating as an electric motor in response to input of electrical energy from the logic/driver module.
Abstract:
A system and method for automatically controlling an engine of a turf-care vehicle. The method comprises receiving, at an engine speed control module, a mode selection input from an engine speed control mode selection device. The mode selection input is indicative of one a plurality of engine speed control modes, and all of the engine speed control modes are implementable by the engine speed control module. The method additionally comprises monitoring, via the engine speed control module, an operating status of one or more vehicle systems and/or one or more vehicle sensors. The method further comprises automatically controlling, via the engine speed control module, a rotational speed of the engine based at least in part on the selected engine speed control mode and the operating status of the one or more vehicle systems and/or one or more vehicle sensors.
Abstract:
A power generation device for a utility vehicle having a battery source capable of storing electrical energy and selectively outputting electrical energy and selectively receiving electrical energy, a logic/driver module operably coupled to the battery source and capable of outputting power to a drive system of the utility vehicle, an internal combustion engine capable of outputting a mechanical driving force in response to a control input from the logic/driver module, and a brushless DC motor operably coupled to the internal combustion engine via a coupler and electrically coupled to the logic/driver module. The brushless DC motor is capable of operating as a generator in response to the mechanical driving force of the internal combustion engine, thereby outputting electrical energy to the logic/driver module, and further is capable of operating as an electric motor in response to input of electrical energy from the logic/driver module.
Abstract:
A power generation device for a utility vehicle having a battery source, a logic/driver module operably coupled to the battery source and capable of outputting power to a motive drive system, an internal combustion engine capable of outputting a mechanical driving force, and a generator system operably coupled to the internal combustion engine and electrically coupled to the logic/driver module. The generator system is capable of operating as a generator in response to the mechanical driving force of the internal combustion engine, thereby outputting electrical energy to the logic/driver module, and further is capable of operating as an electric motor in response to input of electrical energy from the logic/driver module. Between a first voltage and a second voltage, the output of the generator is reduced. Between the second voltage and a third voltage, the generator output is reduced to zero and the internal combustion engine is reduced to idle.
Abstract:
A system and method for automatically controlling an engine of a turf-care vehicle. The method comprises receiving, at an engine speed control module, a mode selection input from an engine speed control mode selection device. The mode selection input is indicative of one a plurality of engine speed control modes, and all of the engine speed control modes are implementable by the engine speed control module. The method additionally comprises monitoring, via the engine speed control module, an operating status of one or more vehicle systems and/or one or more vehicle sensors. The method further comprises automatically controlling, via the engine speed control module, a rotational speed of the engine based at least in part on the selected engine speed control mode and the operating status of the one or more vehicle systems and/or one or more vehicle sensors.
Abstract:
A power generation and starting device for a utility vehicle having a battery source capable of storing electrical energy, a logic/driver module operably coupled to the battery source and capable of outputting power to a drive system of the utility vehicle, an internal combustion engine capable of outputting a mechanical driving force, and a generator system operably coupled to the internal combustion engine and electrically coupled to the logic/driver module. The generator system is capable of operating as a generator in response to the mechanical driving force of the internal combustion engine, thereby outputting electrical energy to the logic/driver module. The generator is further capable of operating as an electric motor in response to input of electrical energy from the logic/driver module to drive the internal combustion engine during startup of the internal combustion engine.
Abstract:
An operator detection system for sensing the presence of an operator at an operator control station of a turf-care vehicle is provided. The system comprises at least one operator presence sensor structured and operable to sense whether an operator is present at the operator control station and a controller communicatively connected to the operator presence sensor(s). The controller structured and operable to determine whether each of the operator presence sensor(s) sense(s) that an operator is present at the operator control station, enable operation of an engine of the vehicle and at least one cutting unit of the vehicle when one or more operator presence sensor(s) sense(s) that the operator is present at the operator control station, and disable operation of the engine and at least one cutting unit when one or more operator presence sensor(s) sense(s) that the operator is not present at the operator control station.