摘要:
A photovoltaic device is formed by depositing at least a first transparent electrode, PIN-structured or NIP-structured microcrystalline silicon layers, a second transparent electrode, and a back electrode in sequence on an electrically insulating transparent substrate. The PIN-structured or NIP-structured microcrystalline silicon layers include a p-type silicon layer, an i-type silicon layer, and an n-type silicon layer. At least one of the first transparent electrode and the second transparent electrode is a ZnO layer doped with Ga, and the Ga concentration is 15 atomic percent or less with respect to Zn.
摘要:
An object of the present invention is to provide a photovoltaic device and a process for producing such a photovoltaic device that enable a stable, high photovoltaic conversion efficiency to be achieved by using a transparent electrode having an optimal relationship between the resistivity and the transmittance. At least one transparent electrode (12, 16) is either a ZnO layer containing no Ga or a Ga-doped ZnO layer in which the quantity of added Ga is not more than 5 atomic % relative to the Zn within the ZnO layer, and the ZnO layer is formed by a sputtering method using a rare gas containing added oxygen as the sputtering gas, wherein the quantity of oxygen added to the sputtering gas is not less than 0.1% by volume and not more than 5% by volume relative to the combined volume of the oxygen and the rare gas.
摘要:
The efficiency of a thin film Si solar battery is improved. Between a back face electrode and a transparent conductive film provided on a front face side of the back face electrode, a refractive index adjustment layer is interposed made from a material that has a lower refractive index than that of the transparent conductive film. For example when the transparent conductive film is GZO, SiO2 is interposed between the transparent conductive film and the back face electrode made from Ag. As a result light that penetrates into and is absorbed at the back face electrode is reduced, and the reflectivity of light at the back face electrode is improved.
摘要:
A photovoltaic device having a high conversion efficiency is produced in a stable manner. The conditions for film deposition of a microcrystalline silicon photovoltaic layer (4) in a photovoltaic device are set based on the Raman peak ratio within a Raman spectrum obtained at the substrate (1) side of the microcrystalline silicon layer (4), and the Raman peak ratio within a Raman spectrum obtained at the opposite side to the substrate (1).
摘要:
A photovoltaic device having a high conversion efficiency is produced in a stable manner. The conditions for film deposition of a microcrystalline silicon photovoltaic layer (4) in a photovoltaic device are set based on the Raman peak ratio within a Raman spectrum obtained at the substrate (1) side of the microcrystalline silicon layer (4), and the Raman peak ratio within a Raman spectrum obtained at the opposite side to the substrate (1).
摘要:
A thin-film solar cell of a tandem type includes a first conductive layer formed on a transparent substrate to which a sun light is input; a top solar cell layer formed on the first conductive layer; and a bottom solar cell layer laminated on the top solar cell layer to be connected with the top solar cell in series. A total generation electric current of the thin-film solar cell layer is determined based on a generation electric current of the bottom solar cell layer.
摘要:
A tandem thin film solar cell is composed of a first conductive layer formed on a transparent substrate; a first solar cell layer formed on the first conductive layer; and a second solar cell layer covering the first solar cell layer. The first conductive layer has surface irregularity, a pitch of the surface irregularity being in a range of 0.2 to 2.5 μm, and an amplitude of the surface irregularity being in a range of one-fourth to half of the pitch of the surface irregularity.
摘要:
A thin-film inspection apparatus includes a storage section (14) that stores at least two feature-value characteristics in which at least two feature values selected from feature values in a spectral reflectance spectrum that are affected by a variation in the film thickness of at least one of a first transparent thin film and a second transparent thin film are each associated with the film thickness of the first transparent thin film and the film thickness of the second transparent thin film; a light irradiation section (11) that irradiates an inspection-target substrate (S) with white light through a transparent glass substrate; a light receiving section (12) that receives reflected light reflected from the inspection-target substrate (S); and an arithmetic section (15) that obtains measurement values of the feature values stored in the storage section (14) from a spectral reflectance spectrum generated based on the received reflected light and that calculates the film thickness of each of the first transparent thin film and the second transparent thin film by using the obtained measurement values of the feature values and the feature-value characteristics stored in the storage section (14).
摘要:
A thin-film inspection apparatus calculates a film thickness of a first transparent thin film and a second transparent thin film of an inspection-target substrate including the first and second transparent thin films and a transparent conductive film on a transparent glass substrate. The apparatus has a storage section storing at least two feature-value characteristics in which at least two feature values selected from feature values in a spectral reflectance spectrum; a light irradiation section irradiating the inspection-target substrate with white light through the transparent glass substrate; a light receiving section receiving light reflected from the inspection-target substrate; and an arithmetic section obtaining measurement values of the feature values stored in the storage section from the spectral reflectance spectrum based on the reflected light received by the light receiving section, and calculating the film thickness of each of the first transparent thin film and the second transparent thin film.
摘要:
The object of the present invention is the reduction of memory capacity in a multi-body problem processing apparatus. In a parameter storing method in multi-body problem processing for performing a molecular dynamics calculation for a plurality of particles existing in a three-dimensional space, parameters required to calculate a nonassociative force acting between particles subjected to the calculation are stored in a storage device and correspond to a combination of the particles subjected to the calculation.