Abstract:
Processes and apparatus for reforming hydrocarbons to reduce the impact of contaminants created by non-catalyst coking. The reaction zone receives sulfur to inhibit the impact, and a control index is used to control the determine conditions with generally lower pressures. Additionally, a compression zone, pressure control zone and combustion zone operation are provided for the operation of the reaction zone at the generally lower pressures.
Abstract:
Processes and apparatus for reforming hydrocarbons to reduce the impact of contaminants created by non-catalyst coking. The reaction zone receives sulfur to inhibit the impact, and a control index is used to control the determine conditions with generally lower pressures. Additionally, a compression zone, pressure control zone and combustion zone operation are provided for the operation of the reaction zone at the generally lower pressures.
Abstract:
Processes for oligomerizing olefins to produce diesel. The oligomerization zone temperature is controlled to counteract catalyst deactivation caused by coking, by contaminants such as cyclo C5 and/or cyclo C6 hydrocarbons, or both. The temperature is increased in increments to ensure that that the oligomerization zone is producing product at a target product yield with a target product quality, which may be measured by a product cetane number. The target product yield is at least 50 wt % and a target product cetane number may be at least 35.
Abstract:
A process and apparatus are presented for the conversion of light paraffins to heavier liquid fuels or distillate. The process and apparatus includes conversion of a paraffin stream to an olefinic stream. The olefinic stream is passed through a reactor zone to convert the olefins to heavier hydrocarbons, including branched paraffins and branched olefins. The process includes recycling a portion of the product to the reactors for controlling the heat and reaction rate of the dimerization or oligomerization process.
Abstract:
An integrated process and apparatus for conversion of gas oil and heavy oil is described. The process includes passing a gas oil feed to a fluid catalytic cracking (FCC) zone to obtain a FCC effluent; separating the FCC effluent in a separation zone into at least two fractions comprising a clarified slurry oil fraction and an overhead fraction; passing the clarified slurry oil fraction to a slurry hydrocracking zone forming at least a naphtha stream; and recycling at least a portion of the slurry hydrocracking naphtha stream to the FCC zone.
Abstract:
A process and apparatus are presented for the conversion of light paraffins to heavier liquid fuels or distillate. The process and apparatus includes conversion of a paraffin stream to an olefinic stream. The olefinic stream is passed through a reactor zone to convert the olefins to heavier hydrocarbons, including branched paraffins and branched olefins. The process includes recycling a portion of the product to the reactors for controlling the heat and reaction rate of the dimerization or oligomerization process.
Abstract:
A process for dimerizing and oligomerizing olefins to distillate fuels which manages the dimerization exotherm by diluting it with paraffins which are inert in the dimerization. The olefin stream can also be split and fed to multiple dimerization reactors to further reduce the heat generated. The ethylene feed can also be cooled before entering the dimerization reactor. The paraffins can be obtained from saturating oligomerized effluent.
Abstract:
A regenerator vessel for adsorbing halogen-containing material from a regenerator vent gas stream has a plurality of catalyst nozzles disposed at a top portion of the regenerator vessel. A first gas outlet is associated with a chlorination zone, and a second gas outlet associated with a combustion zone. A drying zone is in fluid communication with an air heater and the drying zone located in a bottom portion of the regenerator vessel. The first gas outlet is configured to withdraw a first gas stream from the chlorination zone and the second gas outlet is configured to withdraw a second gas stream from the combustion zone. The top portion of the regenerator vessel has an adsorption zone having a vent gas inlet port, a vent gas outlet port, and a portion of an annular catalyst bed.
Abstract:
A process for increasing the yields of propylene is presented. The process is an FCC process for producing light olefins, and utilizes a smaller secondary reactor that uses the same catalyst, or a different catalyst as in the FCC reactor. The FCC effluent is separated, and C4 and C5 olefins are recovered. The C4 and C5 olefins are passed to the secondary reactor for cracking to generate increased light olefin yields.
Abstract:
A regenerator vessel for adsorbing halogen-containing material from a regenerator vent gas stream has a plurality of catalyst nozzles disposed at a top portion of the regenerator vessel. A first gas outlet is associated with a chlorination zone, and a second gas outlet associated with a combustion zone. A drying zone is in fluid communication with an air heater and the drying zone located in a bottom portion of the regenerator vessel. The first gas outlet is configured to withdraw a first gas stream from the chlorination zone and the second gas outlet is configured to withdraw a second gas stream from the combustion zone. The top portion of the regenerator vessel has an adsorption zone having a vent gas inlet port, a vent gas outlet port, and a portion of an annular catalyst bed.