Abstract:
Provided is a method of forming a conductive polymer composite. The method includes forming a mixture. The mixture includes a first thermoplastic polymer, a second thermoplastic polymer and a plurality of metal particles. The first thermoplastic polymer and the second thermoplastic polymer are immiscible with each other. The plurality of metal particles include at least one metal that is immiscible with both the first thermoplastic polymer and the second thermoplastic polymer. The method includes heating the mixture to a temperature greater than or equal to a melting point of the metal.
Abstract:
A method for producing flexible conductive printed circuit with a printed overcoat is disclosed. For example, the method includes forming conductive printed circuit lines on a flexible substrate, detecting locations on the flexible substrate where the conductive printed circuit lines are formed, and printing an overcoat over the conductive printed circuit lines at the locations that are detected on the flexible substrate, wherein the overcoat comprises a mixture of thermoplastic polyurethane (TPU) and a solvent having a viscosity of 1 centipoise to 2,000 centipoise to allow the mixture to be printed.
Abstract:
Provided herein is a composition for eutectic metal alloy nanoparticles having an average particle size ranging from about 0.5 nanometers to less than about 5000 nanometers and at least one organoamine stabilizer. Also provided herein is a process for preparing eutectic metal alloy nanoparticles comprising mixing at least one organic polar solvent, at least one organoamine stabilizer, and a eutectic metal alloy to create a mixture; sonicating the mixture at a temperature above the melting point of the eutectic metal alloy; and collecting a composition comprising a plurality of eutectic metal alloy nanoparticles having an average particle size ranging from about 0.5 nanometers to less than about 5000 nanometers. Further disclosed herein are hybrid conductive ink compositions comprising a component comprising a plurality of metal nanoparticles and a component comprising a plurality of eutectic metal alloy nanoparticles.
Abstract:
Methods for printing a conductive object are provided which may comprise dispensing one of a first ink composition and a second ink composition towards a substrate surface to form a deposition region on the substrate surface or on a previously printed object on the substrate surface, wherein the first ink composition comprises an aqueous solution of a metal compound and the second ink composition comprises an aqueous solution of a stable free radical; dispensing the other of the first and second ink compositions in the deposition region to mix the first and second ink compositions and induce chemical reduction of the metal compound by the stable free radical and precipitation of the metal of the metal compound; and removing solvent from the deposition region, thereby forming a conductive object comprising the precipitated metal.
Abstract:
An article includes a body and at least one 3D-printable conductive composite segment in mechanical communication with the body. The body includes a first material and the at least one conductive composite segment includes a matrix material, a plurality of carbon nanotubes, and conductive additives. The conductive additives include a plurality of metallic particulates, a plurality of graphitic particles or a combination thereof.
Abstract:
A system of inkjet inks suitable for additive manufacturing by inkjet printing includes a build ink and a support ink, the build ink and support ink have a differential color scheme and at least one of the build ink or the support ink includes a colorant. A method of additive manufacturing includes providing such a system of inkjet inks and printing via a multi-jet inkjet printing system an article with the build ink and the support ink, the article including a build material portion and a support material portion. A cartridge or kit for additive manufacturing by inkjet printing includes such a system of inkjet inks.
Abstract:
An article includes a body and at least one 3D-printable conductive composite segment in mechanical communication with the body. The body includes a first material and the at least one conductive composite segment includes a matrix material, a plurality of carbon nanotubes, and conductive additives. The conductive additives include a plurality of metallic particulates, a plurality of graphitic particles or a combination thereof.
Abstract:
Provided is a method of forming a conductive polymer composite. The method includes forming a mixture. The mixture includes a first thermoplastic polymer, a second thermoplastic polymer and a plurality of metal particles. The first thermoplastic polymer and the second thermoplastic polymer are immiscible with each other. The plurality of metal particles include at least one metal that is immiscible with both the first thermoplastic polymer and the second thermoplastic polymer. The method includes heating the mixture to a temperature greater than or equal to a melting point of the metal.
Abstract:
An image forming apparatus includes an electrophotographic photoconductive member and a delivery unit. The delivery unit is disposed in contact with a surface of the photoconductive member to apply a layer of functional materials to the surface of the photoconductive member, wherein a cylindrical axis of the delivery unit is angled with respect to a cylindrical axis of the photoconductive member to increase uniformity of the functional materials layer. An image forming apparatus an electrophotographic photoconductive member, a charging unit and a delivery unit disposed in contact with the surface of the charging unit, wherein the delivery unit applies a layer of functional materials to the surface of the photoconductive member. and a cylindrical axis of the delivery unit is angled with respect to a cylindrical axis of the charging unit to increase the uniformity of the functional materials layer
Abstract:
Conductive adhesive compositions, jettable ink adhesive compositions, printed electronics incorporating the conductive adhesive compositions, and methods for preparing the same are provided. The conductive adhesive composition may include a eutectic metal alloy, an amine, and a solvent, and the eutectic metal alloy may include gallium, indium, and optionally tin.