摘要:
A nonvolatile semiconductor memory device with a plurality of read modes switchably built therein is provided. This nonvolatile semiconductor memory device is the one that has a memory cell array in which electrically rewritable nonvolatile memory cells are laid out and a read circuit which performs data readout of the memory cell array. The nonvolatile semiconductor memory device has a first read mode and a second read mode. The first read mode is for reading data by means of parallel data transfer of the same bit number when sending data from the memory cell array through the read circuit up to more than one external terminal. The second read mode is for performing parallel data transfer of a greater bit number than that of the first read mode when sending data from the memory cell array to the read circuit while performing data transfer of a smaller bit number than the bit number when sending data from the read circuit up to the external terminal.
摘要:
A potential generating circuit generates two types of erase verify threshold values EVT1 and EVT2. These values satisfy the relationship of EVT2=EVT1+(OEVT−EVTL). OEVT is an over-erase verify threshold value. While the erase verify threshold value is set at EVT2, the lower limit of a threshold voltage distribution after data erase is higher than OEVT. EVTL is the lower limit of the threshold voltage distribution after data erase while the erase verify threshold value is set at EVT1 and is lower than OEVT. The erase verify threshold values EVT1 and EVT2 are switched according to an operation mode. During a write/erase test, for example, the erase verify threshold value is set at EVT2. On the other hand, during the normal operation, the erase verify threshold value is set at EVT1.
摘要:
A potential generating circuit generates two types of erase verify threshold values EVT1 and EVT2. These values satisfy the relationship of EVT2=EVT1+(OEVT−EVTL). OEVT is an over-erase verify threshold value. While the erase verify threshold value is set at EVT2, the lower limit of a threshold voltage distribution after data erase is higher than OEVT. EVTL is the lower limit of the threshold voltage distribution after data erase while the erase verify threshold value is set at EVT1 and is lower than OEVT. The erase verify threshold values EVT1 and EVT2 are switched according to an operation mode. During a write/erase test, for example, the erase verify threshold value is set at EVT2. On the other hand, during the normal operation, the erase verify threshold value is set at EVT1.
摘要:
A potential generating circuit generates two types of erase verify threshold values EVT1 and EVT2. These values satisfy the relationship of EVT2=EVT1+(OEVT−EVTL). OEVT is an over-erase verify threshold value. While the erase verify threshold value is set at EVT2, the lower limit of a threshold voltage distribution after data erase is higher than OEVT. EVTL is the lower limit of the threshold voltage distribution after data erase while the erase verify threshold value is set at EVT1 and is lower than OEVT. The erase verify threshold values EVT1 and EVT2 are switched according to an operation mode. During a write/erase test, for example, the erase verify threshold value is set at EVT2. On the other hand, during the normal operation, the erase verify threshold value is set at EVT1.
摘要:
A potential generating circuit generates two types of erase verify threshold values EVT1 and EVT2. These values satisfy the relationship of EVT2=EVT1+(OEVT−EVTL). OEVT is an over-erase verify threshold value. While the erase verify threshold value is set at EVT2, the lower limit of a threshold voltage distribution after data erase is higher than OEVT. EVTL is the lower limit of the threshold voltage distribution after data erase while the erase verify threshold value is set at EVT1 and is lower than OEVT. The erase verify threshold values EVT1 and EVT2 are switched according to an operation mode. During a write/erase test, for example, the erase verify threshold value is set at EVT2. On the other hand, during the normal operation, the erase verify threshold value is set at EVT1.
摘要:
A semiconductor device includes a memory cell array including a plurality of cores, each of said cores including one block or a plurality of blocks. The semiconductor device further includes a first power supply line which is provided commonly for said plurality of cores and which provides a data reading power supply potential; a second power supply line which is provided commonly for said plurality of cores and which provides a data writing or erasing power supply potential; and a power supply line switching circuit which is provided for each of said plurality of cores and which selectively connects a corresponding one of said plurality of cores to said first power supply line or said second power supply line in accordance with whether said corresponding one of said plurality of cores is in a data read mode or a data write or erase mode.
摘要:
A nonvolatile semiconductor memory includes a memory cell array and a redundant cell array, and while a data write operation or a data erase operation is carried out in one of banks in the memory cell array, a data read operation can be carried out in the other banks. The redundant cell array has one or more spare blocks and is provided independently of the banks to relieve a defective memory cell of the memory cell array by substituting the spare block for a defective memory block in any of the blocks. The memory block is active when an access block address to be accessed in the memory cell array in the data write or erase operation or the data read operation does not coincide with the defective block address in the defective address storing circuit, whereas the spare block is active when the access block address coincides with the defective block address in the defective address storing circuit.
摘要:
A memory cell array 1 has the arrangement of a plurality of cores, each of which comprises one block or a set of a plurality of blocks, each block defining a range of memory cells serving as a unit of data erase. A core selecting part for selecting an optional number of cores to write/erase data is provided for writing data in memory cells in cores selected on the basis of a write command and for erasing data from selected blocks in cores selected on the basis of an erase command. Thus, there is realized a free core system capable of reading data out from memory cells in unselected cores while writing/erasing data in cores selected by the core selecting part.
摘要:
A reference current generating circuit generates at least one reference current. A voltage generating circuit generates voltage. A sense amplifier compares a current caused to flow in a memory cell according to the voltage supplied from the voltage generating circuit with the reference current supplied from the reference current generating circuit. A control section is supplied with an output signal of the sense amplifier. When verifying the threshold voltage of the memory cell, the control section causes the voltage generating circuit to generate verify voltage which is the same as readout voltage generated at the time of data readout from the memory cell.
摘要:
A reference current generating circuit generates at least one reference current. A voltage generating circuit generates voltage. A sense amplifier compares a current caused to flow in a memory cell according to the voltage supplied from the voltage generating circuit with the reference current supplied from the reference current generating circuit. A control section is supplied with an output signal of the sense amplifier. When verifying the threshold voltage of the memory cell, the control section causes the voltage generating circuit to generate verify voltage which is the same as readout voltage generated at the time of data readout from the memory cell.