摘要:
A novel method of making articles that comprise a periodic heteroepitaxial semiconductor structure is disclosed. The method pertains to growth of the periodic structure by MBE, CVD or similar growth techniques, and involves periodically changing the substrate temperature. For instance, a periodic multilayer GaAs/AlGaAs is grown by MBE, with the substrate temperature cycled between 600.degree. C. and 700.degree. C. The novel method can produce multilayer structures of uniformly high material quality.
摘要:
Disclosed is an advantageous method of making ridge-waveguide lasers. The method is a self-aligned method that does not comprise any critical alignment steps. Thus it is useful for making lasers that have a very narrow ridge waveguide. Such lasers are desirable because they can suppress lateral higher order modes.
摘要:
Disclosed is an edge-emitting semiconductor laser that has a single waveguiding structure, and that comprises means for reducing the transverse divergence of the far-field pattern of the laser emission. Typically these means comprise reflecting means (preferably transverse distributed Bragg reflectors) disposed parallel to the junction plane of the laser. Lasers according to the invention can have a highly stable single mode output having a substantially symmetrical far field pattern. Disclosed is also an advantageous method of making ridge-waveguide lasers that can, inter alia, be used to make lasers according to the invention. The method is a self-aligned method that does not comprise any critical alignment steps. Thus it is useful for making lasers that have a very narrow ridge waveguide. Such lasers are desirable because they can suppress lateral higher order modes.
摘要:
A GaAs-based self-aligned laser with emission wavelength in the approximate wavelength regime 0.87-1.1 .mu.m is disclosed. The laser is a strained layer QW laser and is readily manufacturable. Preferred embodiments of the inventive laser do not comprise Al-containing semiconductor alloy. Lasers according to the invention can for instance be used advantageously as 0.98 .mu.m pump sources for Er-doped fiber amplifiers.
摘要:
Disclosed is apparatus that comprises integrated colliding pulse mode-locked means for generating ultrashort optical pulses. The means advantageously are capable of producing transform-limited (or nearly transform-limited) pulses. Several exemplary embodiments are disclosed. Exemplarily the invention is embodied in InP-based integrated means that produced 1.4 ps pulses at a 32.6 GHz repetition rate.
摘要:
A system and method of optically routing wavelength channels from within a plurality of optical inputs to any of a plurality of optical outputs. An optical wavelength-selective cross connect (WSXC) switch is described with a first stage of wavelength division multiplexing (WDM) routers which support an optical input and a plurality of optical outputs, which are interconnected to a second stage of WDM routers having a plurality of optical inputs and an optical output. The wavelength channel is routed in two stages from one of the input stage routers to an output stage router for output. It should be appreciated that the WSXC switch of the invention can be utilized for passing optical signals in either direction. In a preferred implementation integrated circuit router chips are stacked into cubes to form the routers stages which are cross coupled using a twisted butt joint to form a WSXC switch.
摘要:
A 1×N2 wavelength selective switch (WSS) configuration in which switch elements are configured in a way that enables the input or output fibers to be arranged in a two-dimensional (2D) array. By employing 2D arrays of input/output channels, the channel count is increased from N to N2 for wavelength selective switches. In one embodiment, in which the components are arranged as a 2- ƒ imaging system, a one-dimensional (1D) array of mirrors is configured such that each mirror has a dual scanning axis (i.e., each mirror can be scanned in X and Y directions). In another embodiment, in which the components are arranged as a 4- ƒ imaging system, two 1D arrays of mirrors are configured with orthogonal scanning directions. In both embodiments, the number of ports is increased from N to N2.
摘要:
A 1×N2 wavelength selective switch (WSS) configuration in which switch elements are configured in a way that enables the input or output fibers to be arranged in a two-dimensional (2D) array. By employing 2D arrays of input/output channels, the channel count is increased from N to N2 for wavelength selective switches. In one embodiment, in which the components are arranged as a 2-f imaging system, a one-dimensional (1D) array of mirrors is configured such that each mirror has a dual scanning axis (i.e., each mirror can be scanned in X and Y directions). In another embodiment, in which the components are arranged as a 4-f imaging system, two 1D arrays of mirrors are configured with orthogonal scanning directions. In both embodiments, the number of ports is increased from N to N2.
摘要:
Wavelength-selective 1×N switches (WSSs) and N×N cross-connects (WSXCs) are described which are fabricated as monolithic or hybrid devices. In a preferred embodiment, the optic ports, dispersion elements, and collimating elements are formed on a single monolithic substrate. A micromirror and actuator are either fabricated within the substrate or a separate micromirror is utilized forming a hybrid WSS or WSXC. The optical elements can be formed in an opaque substrate layer (e.g., silicon, SOI, and so forth) or in an optically transparent layer of a PLC material (e.g., silica-on-silicon). Embodiments describe the use of linear and rotary comb drives for actuating front surface mirrors, or solid-immersion micromirrors (SIMs). The switching devices reduce system footprint while reducing or eliminating the need for alignment of the optical elements.
摘要:
A 1×N2 wavelength selective switch (WSS) configuration in which switch elements are configured in a way that enables the input or output fibers to be arranged in a two-dimensional (2D) array. By employing 2D arrays of input/output channels, the channel count is increased from N to N2 for wavelength selective switches. In one embodiment, in which the components are arranged as a 2-f imaging system, a one-dimensional (1D) array of mirrors is configured such that each mirror has a dual scanning axis (i.e., each mirror can be scanned in X and Y directions). In another embodiment, in which the components are arranged as a 4-f imaging system, two 1D arrays of mirrors are configured with orthogonal scanning directions. In both embodiments, the number of ports is increased from N to N2.