Abstract:
In various embodiments, a method of processing a monocrystalline substrate is provided. The method may include severing the substrate along a main processing side into at least two monocrystalline substrate segments, and forming a micromechanical structure comprising at least one monocrystalline substrate segment of the at least two substrate segments.
Abstract:
A technique for forming a film of material (12) from a donor substrate (10). The technique has a step of introducing energetic particles (22) through a surface of a donor substrate (10) to a selected depth (20) underneath the surface, where the particles have a relatively high concentration to define a donor substrate material (12) above the selected depth. An energy source is directed to a selected region of the donor substrate to initiate a controlled cleaving action of the substrate (10) at the selected depth (20), whereupon the cleaving action provides an expanding cleave front to free the donor material from a remaining portion of the donor substrate.
Abstract:
A process for cutting out a block of material (10) comprising the following stages: (a) the formation in the block of a buried zone (12), embrittled by at least one stage of ion introduction, the buried zone defining at least one superficial part (14) of the block, (b) the formation at the level of the embrittled zone of at least one separation initiator (30, 36) by the use of a first means of separation chosen from amongst the insertion of a tool, the injection of a fluid, a thermal treatment and/or implantation of ions of an ionic nature different from that introduced during the preceding stage, and (c) the separation at the level of the embrittled zone of the superficial part (14) of the block from a remaining part (16), called the mass part, from the separation initiator (30, 36) by the use of a second means, different from the first means of separation and chosen from among a thermal treatment and/or the application of mechanical forces acting between the superficial part and the embrittled zone. Application for the manufacture of components for micro-electronics, opto-electronics or micro-mechanics.
Abstract:
A process for cutting out a block of material includes a step of introducing ions in the block thereby forming an embrittled zone and defining at least one superficial part of the block. The method also includes a step of forming at least one separation initiator at the level of the embrittled zone, wherein the step of forming the separation initiator includes implanting ions of an ionic nature different from that introduced during the preceding step. The method further includes a step of separating at the level of the embrittled zone the superficial part of the block from a remaining part of the block from the separation initiator, wherein the separation step includes at least one of a thermal treatment and the application of mechanical forces acting between the superficial part and the embrittled zone.
Abstract:
A technique for forming a film of material (12) from a donor substrate (10). The technique has a step of introducing energetic particles (22) through a surface of a donor substrate (10) to a selected depth (20) underneath the surface, where the particles have a relatively high concentration to define a donor substrate material (12) above the selected depth. An energy source is directed to a selected region of the donor substrate to initiate a controlled cleaving action of the substrate (10) at the selected depth (20), whereupon the cleaving action provides an expanding cleave front to free the donor material from a remaining portion of the donor substrate.
Abstract:
A hybrid silicon-on-silicon substrate. A thin film (2101) of single-crystal silicon is bonded to a target wafer (46). A high-quality bond is formed between the thin film and the target wafer during a high-temperature annealing process. It is believed that the high-temperature annealing process forms covalent bonds between the layers at the interface (2305). The resulting hybrid wafer is suitable for use in integrated circuit manufacturing processes, similar to wafers with an epitaxial layer.
Abstract:
A technique for forming a film of material (12) from a donor substrate (10). The technique has a step of forming a weakened region in a selected manner at a selected depth (20) underneath the surface. An energy source is directed to a selected region of the donor substrate to initiate a controlled cleaving action of the substrate (10) at the selected depth (20), whereupon the cleaving action provides an expanding cleave front to free the donor material from a remaining portion of the donor substrate.
Abstract:
A technique for forming a film of material (12) from a donor substrate (10). The technique has a step of introducing energetic particles (22) through a surface of a donor substrate (10) to a selected depth (20) underneath the surface, where the particles have a relatively high concentration to define a donor substrate material (12) above the selected depth. An energy source is directed to a selected region of the donor substrate to initiate a controlled cleaving action of the substrate (10) at the selected depth (20), whereupon the cleaving action provides an expanding cleave front to free the donor material from a remaining portion of the donor substrate.
Abstract:
An economical hybrid wafer utilizing a lower-quality, lower cost transfer substrate to support a higher-quality thin film. A high-quality thin film (2101) is separated from a donor wafer (2100) and bonded to a transfer, or target, substrate (46). The donor wafer is preferably single-crystal silicon optimized for device fabrication, while the transfer substrate provides mechanical support. The thin film is not grown on the transfer substrate, and thus defects in the transfer substrate are not grown into the thin film. A low-temperature bonding process can provide an abrupt junction between the target wafer and the thin film.
Abstract:
A technique for forming films of material (14) from a donor substrate (10). The technique has a step of introducing gas-forming particles (12) through a surface of a donor substrate (10) to a selected depth underneath the surface. The gas-forming particles form a layer of microbubbles within the substrate. A global heat treatment of the substrate then creates a pressure effect to separate a thin film of material from the substrate. Additional gas-forming particles are introduced into the donor substrate and a second thin film of material is then separated from the donor substrate. In a specific embodiment, the gas-forming particles are implanted using a plasma immersion ion implantation method.