METHOD AND APPARATUS FOR COST AND POWER EFFICIENT, SCALABLE OPERATING SYSTEM INDEPENDENT SERVICES
    92.
    发明申请
    METHOD AND APPARATUS FOR COST AND POWER EFFICIENT, SCALABLE OPERATING SYSTEM INDEPENDENT SERVICES 有权
    成本和功率有效的可扩展操作系统独立服务的方法和装置

    公开(公告)号:US20090172438A1

    公开(公告)日:2009-07-02

    申请号:US11964439

    申请日:2007-12-26

    CPC classification number: G06F1/3287 G06F1/3209 Y02D10/171

    Abstract: A low cost, low power consumption scalable architecture is provided to allow a computer system to be managed remotely during all system power states. In a lowest power state, power is only applied to minimum logic necessary to examine a network packet. Power is applied for a short period of time to an execution subsystem and one of a plurality of cores selected to handle processing of received service requests. After processing the received service requests, the computer system returns to the lowest power state.

    Abstract translation: 提供了低成本,低功耗的可扩展架构,以允许在所有系统电源状态期间远程管理计算机系统。 在最低功率状态下,功率仅适用于检查网络分组所需的最小逻辑。 将电力短时间施加到执行子系统,并且被选择用于处理所接收的服务请求的处理的多个核心中的一个。 在处理接收到的服务请求之后,计算机系统返回到最低功率状态。

    Load mechanism
    97.
    发明申请
    Load mechanism 有权
    负载机制

    公开(公告)号:US20070156990A1

    公开(公告)日:2007-07-05

    申请号:US11323000

    申请日:2005-12-30

    CPC classification number: G06F9/30043 G06F9/30032

    Abstract: A method is disclosed. The method includes scheduling a load operation at least twice the size of a maximum access supported by a memory device, dividing the load operation into a plurality of separate load operation segments having a size equivalent to the maximum access supported by the memory device, and performing each of the plurality of load operation segments. A further method is disclosed where a temporary register is used to minimize the number of memory accesses to support unaligned accesses.

    Abstract translation: 公开了一种方法。 该方法包括将加载操作调度至少是由存储器件支持的最大访问大小的两倍,将加载操作划分成具有等于存储器设备支持的最大访问大小的多个单独的加载操作段,以及执行 多个加载操作段中的每一个。 公开了一种另外的方法,其中使用临时寄存器来最小化用于支持未对齐访问的存储器访问的数量。

    Flow optimization and prediction for VSSE memory operations
    98.
    发明申请
    Flow optimization and prediction for VSSE memory operations 有权
    VSSE存储器操作的流优化和预测

    公开(公告)号:US20070143575A1

    公开(公告)日:2007-06-21

    申请号:US11315964

    申请日:2005-12-21

    CPC classification number: G06F9/345 G06F9/3017 G06F9/325 G06F9/3455 G06F9/3844

    Abstract: In one embodiment, a method for flow optimization and prediction for vector streaming single instruction, multiple data (SIMD) extension (VSSE) memory operations is disclosed. The method comprises generating an optimized micro-operation (μop) flow for an instruction to operate on a vector if the instruction is predicted to be unmasked and unit-stride, the instruction to access elements in memory, and accessing via the optimized μop flow two or more of the elements at the same time without determining masks of the two or more elements. Other embodiments are also described.

    Abstract translation: 在一个实施例中,公开了一种用于向量流单个指令,多数据(SIMD)扩展(VSSE)存储器操作的流优化和预测的方法。 该方法包括:如果预测指令是未屏蔽和单步的,则生成用于对矢量进行操作的指令的优化的微操作(muop)流程,访问存储器中的元件的指令以及经由优化的muop流2访问 或更多的元素,而不确定两个或更多个元件的掩模。 还描述了其它实施例。

    Providing a backing store in user-level memory
    99.
    发明申请
    Providing a backing store in user-level memory 有权
    在用户级内存中提供后备存储

    公开(公告)号:US20070101076A1

    公开(公告)日:2007-05-03

    申请号:US11263628

    申请日:2005-10-31

    CPC classification number: G06F9/463 G06F11/1438 G06F11/2033

    Abstract: In one embodiment, the present invention includes a method for requesting an allocation of memory to be a backing store for architectural state information of a processor and storing the architectural state information in the backing store using an application. In this manner, the backing store and processor enhancements using information in the backing store may be transparent to an operating system. Other embodiments are described and claimed.

    Abstract translation: 在一个实施例中,本发明包括一种用于请求分配作为用于处理器的体系结构状态信息的后备存储器的存储器并使用应用程序将架构状态信息存储在后备存储器中的方法。 以这种方式,使用后备存储器中的信息的后备存储和处理器增强可能对操作系统是透明的。 描述和要求保护其他实施例。

Patent Agency Ranking