Abstract:
In an embodiment, a processor includes at least one core including a first core. The first core includes memory execution logic to execute one or more memory instructions, memory dispatch logic to output a plurality of memory instructions to the memory execution logic, and reactive memory instruction tracking logic. The reactive memory instruction tracking logic is to detect an onset of a memory instruction high power event associated with execution of at least one of the memory instructions, and to indicate to the memory dispatch logic to throttle output of the memory instructions to the memory execution logic responsive to detection of the onset of the memory instruction high power event. The processor also includes cache memory coupled to the at least one core. Other embodiments are described and claimed.
Abstract:
Some implementations provide techniques and arrangements for adjusting a rate at which operations are performed by a processor based on a comparison of a first indication of power consumed by the processor as a result of performing a first set of operations and a second indication of power consumed by the processor as a result of performing a second set of operations. The rate at which operations are performed by the processor may be adjusted when the comparison indicates that a difference between the first indication of power consumed by the processor and the second indication of power consumed by the processor is greater than a threshold value.
Abstract:
A processor includes a logic to execute a first instruction and a second instruction. The first instruction is ordered before the second instruction. Each instruction references a respective logical register assigned to a respective physical register. The processor also includes logic to reassign a physical register of the second instruction to another logical register before retirement of the first instruction.
Abstract:
An enhanced loop streaming detection mechanism is provided in a processor to reduce power consumption. The processor includes a decoder to decode instructions in a loop into micro-operations, and a loop streaming detector to detect the presence of the loop in the micro-operations. The processor also includes a loop characteristic tracker unit to identify hardware components downstream from the decoder that are not to be used by the micro-operations in the loop, and to disable the identified hardware components. The processor also includes execution circuitry to execute the micro-operations in the loop with the identified hardware components disabled.
Abstract:
A technique for using memory attributes to relay information to a program or other agent. More particularly, embodiments of the invention relate to using memory attribute bits to check various memory properties in an efficient manner.
Abstract:
Novel instructions, logic, methods and apparatus are disclosed to test transactional execution status. Embodiments include decoding a first instruction to start a transactional region. Responsive to the first instruction, a checkpoint for a set of architecture state registers is generated and memory accesses from a processing element in the transactional region associated with the first instruction are tracked. A second instruction to detect transactional execution of the transactional region is then decoded. An operation is executed, responsive to decoding the second instruction, to determine if an execution context of the second instruction is within the transactional region. Then responsive to the second instruction, a first flag is updated. In some embodiments, a register may optionally be updated and/or a second flag may optionally be updated responsive to the second instruction.
Abstract:
In one embodiment, the present invention includes a predictor to predict contention of an operation to be executed in a program. The operation may be processed based on a result of the prediction, which may be based on multiple independent predictions. In one embodiment, the operation may be optimized if no contention is predicted. Other embodiments are described and claimed.
Abstract:
Novel instructions, logic, methods and apparatus are disclosed to test transactional execution status. Embodiments include decoding a first instruction to start a transactional region. Responsive to the first instruction, a checkpoint for a set of architecture state registers is generated and memory accesses from a processing element in the transactional region associated with the first instruction are tracked. A second instruction to detect transactional execution of the transactional region is then decoded. An operation is executed, responsive to decoding the second instruction, to determine if an execution context of the second instruction is within the transactional region. Then responsive to the second instruction, a first flag is updated. In some embodiments, a register may optionally be updated and/or a second flag may optionally be updated responsive to the second instruction.
Abstract:
Some implementations provide techniques and arrangements for adjusting a rate at which operations are performed by a processor based on a comparison of a first indication of power consumed by the processor as a result of performing a first set of operations and a second indication of power consumed by the processor as a result of performing a second set of operations. The rate at which operations are performed by the processor may be adjusted when the comparison indicates that a difference between the first indication of power consumed by the processor and the second indication of power consumed by the processor is greater than a threshold value.
Abstract:
A processor and method are described for scheduling operations for execution within a reservation station. For example, a method in accordance with one embodiment of the invention includes the operations of: classifying a plurality of operations based on the execution ports usable to execute those operations; allocating the plurality of operations into groups within a reservation station based on the classification, wherein each group is serviced by one or more execution ports corresponding to the classification, and wherein two or more entries within a group share a common read port and a common write port; dynamically scheduling two or more operations in a group for concurrent execution based on the ports capable of executing those operations and a relative age of the operations.