Baseball training bat with colored transferable bands
    91.
    发明授权
    Baseball training bat with colored transferable bands 失效
    棒球训练棒与彩色可转移乐队

    公开(公告)号:US6045465A

    公开(公告)日:2000-04-04

    申请号:US54694

    申请日:1998-04-03

    CPC classification number: A63B69/0002 A63B2069/0008 A63B69/3617

    Abstract: A baseball bat which includes one or more colored bands with transferrable colored pigments in or adjacent to the hitting zone to assist a batter in determining where a ball is hit on the hitting zone of the bat. The colored bands on the bat have a color pigment that will mark the ball when hit. The marked ball will provide an indication of where the bat impacted the ball. This information can be used to better train the players in hitting the balls.

    Abstract translation: 一种棒球棒,其包括一个或多个彩色带,其中具有可转移的着色颜料,在击球区域中或其附近,以协助击球手确定球在击球区域的击球区域。 蝙蝠上的彩色乐队有一个彩色颜料,当打击时会标记球。 标记的球将提供蝙蝠撞击球的位置的指示。 这些信息可以用来更好地训练玩家击球。

    Fiberoptic assembly useful in optical spectroscopy
    92.
    发明授权
    Fiberoptic assembly useful in optical spectroscopy 失效
    光纤组件可用于光谱学

    公开(公告)号:US6006001A

    公开(公告)日:1999-12-21

    申请号:US982332

    申请日:1997-12-02

    CPC classification number: G02B6/241 A61B5/0059 G02B6/04

    Abstract: A fiberoptic assembly for optical spectroscopic analysis of a sample. In a preferred embodiment, the assembly is well-suited for use inside the working channel of an endoscope and comprises a tubular outer jacket and a tubular inner jacket, the inner jacket being coaxial with and positioned inside the outer jacket. The open front end of the inner jacket is spaced rearwardly a short distance relative to the open front end of the outer jacket. The outer jacket has an outer diameter of approximately 2.2 mm. The assembly also includes a plug made of fused silica. The plug has a front cylindrical portion of comparatively large cross-sectional diameter and a rear cylindrical portion of comparatively small cross-sectional diameter. The front portion is mounted within the outer jacket by a friction-fit and extends longitudinally from the open front end thereof to the open front end of the inner jacket. The rear portion of the plug is mounted within the inner jacket by a friction-fit and extends rearwardly from its open front end for a short distance. A narrow-band filter in the form of a dielectric-coating is formed on the rear end of the rear portion of the plug. The assembly also includes an illumination fiber centered within the inner jacket and spaced rearwardly a short distance from the narrow-band filter. The output end of the illumination filter is shaped to collimate light emergent therefrom. The assembly additionally comprises a plurality of light collection fibers, which fibers are disposed within the outer tubular jacket and are spaced about the outside of the inner tubular jacket.

    Abstract translation: 用于光谱分析样品的光纤组件。 在优选实施例中,该组件非常适合于在内窥镜的工作通道内部使用,并且包括管状外护套和管状内护套,内护套与外护套同轴并位于外护套内。 内护套的开放前端相对于外护套的敞开前端向后隔开一短距离。 外护套的外径约为2.2mm。 组件还包括由熔融石英制成的塞子。 插头具有比较大的横截面直径的前圆柱形部分和相对较小横截面直径的后圆柱形部分。 前部通过摩擦配合安装在外护套内,并从其敞开的前端纵向延伸到内护套的敞开的前端。 插头的后部通过摩擦配合安装在内护套内,并从其敞开的前端向后延伸短距离。 在插头后部的后端形成电介质涂层形式的窄带滤波器。 该组件还包括以内护套为中心并与窄带过滤器相隔一定距离的照明纤维。 照明滤光器的输出端被成形为使从其出射的光准直。 组件还包括多个聚光纤维,该纤维布置在外部管状护套内并且围绕内部管状护套的外部间隔开。

    Time-resolved diffusion tomographic imaging in highly scattering turbid
media
    93.
    发明授权
    Time-resolved diffusion tomographic imaging in highly scattering turbid media 失效
    在高散射混浊介质中的时间分辨扩散断层成像

    公开(公告)号:US5813988A

    公开(公告)日:1998-09-29

    申请号:US618471

    申请日:1996-03-18

    CPC classification number: A61B5/0073 G01N21/4795 A61B5/0091

    Abstract: A method for imaging objects in highly scattering turbid media. According to one embodiment of the invention, the method involves using a plurality of intersecting source/detectors sets and time-resolving equipment to generate a plurality of time-resolved intensity curves for the diffusive component of light emergent from the medium. For each of the curves, the intensities at a plurality of times are then inputted into the following inverse reconstruction algorithm to form an image of the medium: X.sup.(k+1).spsp.T =�Y.sup.T W+X.sup.(k).spsp.T .LAMBDA.!�W.sup.T W+.LAMBDA.!.sup.-1 wherein W is a matrix relating output at detector position r.sub.d, at time t, to source at position r.sub.s, .LAMBDA. is a regularization matrix, chosen for convenience to be diagonal, but selected in a way related to the ratio of the noise, to fluctuations in the absorption (or diffusion) X.sub.j that we are trying to determine: .LAMBDA..sub.ij =.lambda..sub.j .delta..sub.ij with .lambda..sub.j = / Here Y is the data collected at the detectors, and X.sup.k is the kth iterate toward the desired absoption information.

    Abstract translation: 一种用于在高散射混浊介质中成像物体的方法。 根据本发明的一个实施例,该方法包括使用多个相交的源/检测器组和时间分辨设备来产生用于从介质出射的光的漫射分量的多个时间分辨强度曲线。 对于每个曲线,多个时间的强度然后被输入到以下逆重建算法中以形成介质的图像:X(k + 1)T = [YTW + X(k)T LAMBDA] [WTW + LAMBDA] -1其中W是将检测器位置rd,时间t处的输出与位置rs处的源相关的矩阵,LAMBDA是为了方便对角线选择的正则化矩阵,但是以与 噪声,nn>我们试图确定的吸收(或扩散)Xj的波动:LAMBDA ij = lambda j delta ij与lambda j = / 这里Y是在 检测器和Xk是朝向期望的吸收信息的第k次迭代。

    Method and apparatus for evaluating the composition of an oil sample
    94.
    发明授权
    Method and apparatus for evaluating the composition of an oil sample 失效
    用于评估油样品组成的方法和装置

    公开(公告)号:US5656810A

    公开(公告)日:1997-08-12

    申请号:US155450

    申请日:1993-11-22

    CPC classification number: G01N21/64 G01N2021/6423

    Abstract: A method and apparatus for evaluating the composition of an oil sample. The method and apparatus are premised on the discovery that spectral differences can be observed in the luminescence, excitation, light scattering and absorption spectra in the near UV, visible and near IR regions for various crude oil components, such as asphaltenes, deasphalted crude oil and organic solid residues. Accordingly, in one preferred embodiment the method comprises illuminating an oil sample with light of a suitable excitation wavelength, measuring the resultant fluorescence therefrom and comparing the resultant fluorescence to appropriate standards derived from known components of crude oil.

    Abstract translation: 用于评估油样的组成的方法和装置。 该方法和装置的前提是发现在各种原油组分如沥青质,脱沥青原油和近红外,可见光和近红外区域的发光,激发,光散射和吸收光谱中可以观察到光谱差异, 有机固体残留物。 因此,在一个优选实施方案中,该方法包括用合适的激发波长的光照射油样品,测量所得到的荧光,并将得到的荧光与源自原油已知组分的合适的标准进行比较。

    Method and device for detecting biological molecules and/or
microorganisms within a desired area or space
    95.
    发明授权
    Method and device for detecting biological molecules and/or microorganisms within a desired area or space 失效
    用于检测所需区域或空间内的生物分子和/或微生物的方法和装置

    公开(公告)号:US5474910A

    公开(公告)日:1995-12-12

    申请号:US136402

    申请日:1993-10-15

    Inventor: Robert R. Alfano

    CPC classification number: G01N21/6486 C12Q1/04 G01J3/4406 Y10S250/91

    Abstract: A method and device for detecting fluorescent biological molecules and/or microorganisms containing said fluorescent biological molecules within a given area or space. The method comprises illuminating an area or space with light of a suitable wavelength to excite the fluorescent biological molecules and then measuring the resultant fluorescent light from the illuminated area or space at a wavelength indicative of fluorescence of the fluorescent biological molecules. The invention can also be used to detect changes in the levels of such biological molecules and/or microorganisms within a given area or space by illuminating the area or space at two different times, measuring the resultant fluorescence after each illumination and comparing the respective fluorescence measurements. The present invention is also directed to a hand-held device for in vivo inspection of desired areas or spaces.

    Abstract translation: 一种用于在给定区域或空间内检测含有所述荧光生物分子的荧光生物分子和/或微生物的方法和装置。 该方法包括用适当波长的光照射面积或空间以激发荧光生物分子,然后以指示荧光生物分子的荧光的波长测量从被照射区域或空间得到的荧光。 本发明还可以用于通过在两个不同时间点亮该区域或空间来检测给定区域或空间内的这些生物分子和/或微生物的水平的变化,测量每次照射之后的所得荧光,并比较各自的荧光测量值 。 本发明还涉及用于体内检查所需区域或空间的手持装置。

    Ultrafast optical imaging of objects in a scattering medium
    96.
    发明授权
    Ultrafast optical imaging of objects in a scattering medium 失效
    物体在散射介质中的超快光学成像

    公开(公告)号:US5371368A

    公开(公告)日:1994-12-06

    申请号:US920193

    申请日:1992-07-23

    Abstract: A system for imaging an object in or behind a highly scattering medium includes a laser for illuminating the highly scattering medium with a beam of light. The light emerging from the highly scattering medium consists of a ballistic component, a snake-like component and a diffuse component. A 4F Fourier imaging system with a Kerr gate located at 2F is used to form a time-space gated image of the emerging light, the time-space gated image consisting primarily of the ballistic component and the snake-like component.

    Abstract translation: 用于在高度散射介质中或其后成像物体的系统包括用于以光束照射高散射介质的激光器。 从高度散射介质出射的光由弹道组件,蛇形部件和漫射部件组成。 使用位于2F的克尔门的4F傅立叶成像系统来形成主要由弹道组件和蛇形部件组成的时空门控图像。

    Method for determining if tissue is malignant as opposed to
non-malignant using time-resolved fluorescence spectroscopy
    97.
    发明授权
    Method for determining if tissue is malignant as opposed to non-malignant using time-resolved fluorescence spectroscopy 失效
    使用时间分辨荧光光谱法确定组织是否恶性的方法与非恶性肿瘤相反

    公开(公告)号:US5348018A

    公开(公告)日:1994-09-20

    申请号:US797723

    申请日:1991-11-25

    Abstract: A method for determining if tissue is malignant as opposed to non-malignant (i.e., benign tumor tissue, benign tissue, or normal tissue), In one embodiment, the method comprises irradiating a human breast tissue sample with light at a wavelength of about 310 nm and measuring the time-resolved fluorescence emitted therefrom at about 340 nm. The time-resolved fluorescence profile is then compared to similar profiles obtained from known malignant and non-malignant human breast tissues. By fitting the profiles to the formula I(t)=A.sub.1 e(-t/.tau..sub.1)+A.sub.2 e(-t/.tau..sub.2) one can quantify the differences between tissues of various conditions. For example, non-malignant human breast tissues exhibit a slow component (.tau..sub.2) which is less than 1.6 ns whereas malignant human breast tissues exhibit a slow component (.tau..sub.2) which is greater than 1.6 ns. In addition, non-malignant human breast tissues exhibit a ratio of fast to slow amplitudes (A.sub.1 /A.sub.2) which is greater than 0.85 whereas malignant human breast tissues exhibit a ratio of fast to slow amplitudes (A.sub.1 /A.sub.2) which is less than 0.6. This technique can be used with different excitation and/or emission wavelengths, and can be applied to the detection of malignancies (or other abnormal states) in tissues other than human breast tissue.

    Abstract translation: 与非恶性(即,良性肿瘤组织,良性组织或正常组织)相反,用于确定组织是否为恶性的方法。在一个实施方案中,该方法包括用约310的波长的光照射人乳房组织样品 并测量在约340nm处从其发射的时间分辨荧光。 然后将时间分辨的荧光图谱与从已知的恶性和非恶性人乳腺组织获得的相似特征进行比较。 通过拟合公式I(t)= A1e(-t / tau1)+ A2e(-t / tau2),可以量化各种条件的组织之间的差异。 例如,非恶性人乳腺组织表现出小于1.6ns的缓慢成分(tau 2),而恶性人乳腺组织表现出大于1.6ns的缓慢成分(tau 2)。 此外,非恶性人乳腺组织表现出快于慢振幅(A1 / A2)的比值大于0.85,而恶性人乳腺组织表现出快于慢振幅(A1 / A2)的比值小于0.6 。 该技术可以用于不同的激发和/或发射波长,并且可以应用于除人乳腺组织以外的组织中的恶性肿瘤(或其他异常状态)的检测。

    Multiple-stage optical Kerr gate system
    98.
    发明授权
    Multiple-stage optical Kerr gate system 失效
    多级光学凯瑞门系统

    公开(公告)号:US5227912A

    公开(公告)日:1993-07-13

    申请号:US784220

    申请日:1991-10-30

    CPC classification number: G02F1/3515 G02F1/3511 G02F2203/26 Y10S372/70

    Abstract: A multiple-stage optical Kerr gate system for gating a probe pulse of light. In a first embodiment, the system includes at least two optical Kerr gates, each Kerr gate including a polarizer, an optical Kerr cell actuable by a pump pulse, and an analyzer. In a second embodiment, at least one of the Kerr cells may be eliminated by arranging the respective sets of polarizers and analyzers so that they share a common Kerr cell. Gated pulses obtained using the present system typically have a signal to noise ratio that is at least 500 times better than that for gated pulses obtained using a single optical Kerr gate system. The system of the present invention may also include means for causing the pump pulse to arrive at the second Kerr cell (in the case of the first embodiment) or at a single Kerr cell a second time (in the case of the second embodiment) non-synchronously with the arrival of the probe pulse thereat. In this manner, gated pulses may be obtained that are much shorter in duration than pulses gated with a single optical Kerr gate system.

    Three-dimensional optical imaging of semi-transparent and opaque objects
using ultrashort light pulses, a streak camera and a coherent fiber
bundle
    99.
    发明授权
    Three-dimensional optical imaging of semi-transparent and opaque objects using ultrashort light pulses, a streak camera and a coherent fiber bundle 失效
    使用超短光脉冲的半透明和不透明物体的三维光学成像,条纹相机和相干光纤束

    公开(公告)号:US5142372A

    公开(公告)日:1992-08-25

    申请号:US489941

    申请日:1990-03-08

    CPC classification number: H04N5/30

    Abstract: An apparatus for producing a 3-dimensional image of semi-transparent object or of a opaque object in a semi-transparent media includes a picosecond or a femtosecond laser, a streak camera, a coherent fiber bundle, a video camera and a computer. The apparatus provides a unique nondestructive and non-invasive diagnostic way for detecting, for example, objects hidden in semi-opaque media. The laser is used to produce an ultrashort light pulse. The coherent fiber bundle is used to convert the 2-dim spatial image that is produced (i.e. scattered or fluorescence light from a 3-dim object illuminated with the ultrashort laser pulse) into a 1-dim line image which is fed into the input slit of the streak camera and then time resolved by the streak camera. The video camera is used to record the 2-dim output (1-dim from input image and 1-dim of the streak time) from the streak camera. The output of the video camera is fed into the computer. In the computer 2-dim data elements are reconstructed into a 3-dim image and then displayed on a monitor. This apparatus essentially converts a streak camera into the equivalent of a framing camera with continuous time imaging capability.

    Abstract translation: 用于在半透明介质中制造半透明物体或不透明物体的三维图像的装置包括皮秒或飞秒激光,条纹相机,相干光纤束,摄像机和计算机。 该装置提供用于检测例如隐藏在半不透明介质中的物体的独特的非破坏性和非侵入性诊断方法。 激光用于产生超短光脉冲。 相干光纤束用于将所产生的2维空间图像(即,用超短激光脉冲照射的3维物体的散射光或荧光)转换成被输入到输入狭缝中的1-dim线图像 的条纹相机,然后由条纹相机时间解决。 摄像机用于从条纹摄像机记录2路输出(输入图像为1微米,条纹时间为1微米)。 摄像机的输出被馈送到计算机。 在计算机中,将2-dim数据元素重建成3-dim图像,然后显示在监视器上。 该装置基本上将条纹相机转换成具有连续时间成像能力的相框。

    Method and apparatus for improving the signal to noise ratio of an image
formed of an object hidden in or behind a semi-opaque random media
    100.
    发明授权
    Method and apparatus for improving the signal to noise ratio of an image formed of an object hidden in or behind a semi-opaque random media 失效
    用于改善信号的噪声比的方法和装置,用于隐藏对象或隐藏在半自动随机媒体中的图像的噪声比

    公开(公告)号:US5140463A

    公开(公告)日:1992-08-18

    申请号:US489942

    申请日:1990-03-08

    Abstract: The quality of image of an object hidden inside a highly scattering semi-opaque disordered medium is improved by using space gate imaging or time gate imaging or space time gate imaging. In space gate imaging, a small segment of the object is illuminated at a time. The scattered light is passed through a spatial noise filter. On the image plane, an aperture is open at the position of the image segment which correspond to the segment of the illuminated object. A full image is obtained by scanning the object segment by segment and simultaneously recording the signal at the corresponding image segment. In time gate imaging, the unscattered (i.e. ballistic) portion of the pulse which contains the information of the image is temporally separated from the other (i.e. scattered) portions which contains the noise using a ultrafast laser pulse and temporal gating devices. The technique is in space-time gate imaging, the two techniques are combined to produce an image with a much higher signal to noise ratio. The time separation between the ballistic and scattered light may be increased by increasing thickness of random medium or by introducing small scatters into the random medium so as to make the medium more random. The signal to noise ratio can also be increased by making the random medium less random (so that there will be less scattered light). In addition, the signal to noise ratio can be increased by introducing an absorbing dye into the medium or by using a wavelength for the light which is in the absorption spectrum of the random medium or by making the medium more ordered (i.e. less random) or by using a pair of parallel polarizers.

Patent Agency Ranking