Abstract:
There is provided an article prepared from a fluoroelastomer, the fluoroelastomer being derived from an emulsion, the emulsion comprising a fluorinated emulsifier represented by the formula F—(CF2)t—[O(CF2)n]m—O—(CHF)o—(CF2)p—X.
Abstract translation:提供由含氟弹性体制备的制品,所述含氟弹性体衍生自乳液,所述乳液包含由式F-(CF 2)t- [O(CF 2)n] m -O-(CHF)o表示的氟化乳化剂 - (CF2)p-X。
Abstract:
The process produces a fluorinated olefin from a fluorinated copolymer having at least one of sulfonic acid groups, carboxylic acid groups, or salts thereof. The process includes heating the fluorinated copolymer at a first temperature not more than 450° C. to decompose at least one of the sulfonic acid groups, carboxylic acid groups, or salts thereof to form a partially pyrolyzed intermediate and subsequently heating the partially pyrolyzed intermediate at a second temperature of at least 550° C. to produce the fluorinated olefin.
Abstract:
An electronic telecommunication article is described comprising a layer of fluoropolymer composition comprising an uncrosslinked fluoropolymer comprising at least 80, 85, or 90% by weight of polymerized units perfluorinated monomers including one or more unsaturated perfluorinated alkyl ethers. In typical embodiments, the uncrosslinked fluoropolymer comprises at least 10, 20, or 30 wt. % of one or more unsaturated perfluorinated alkyl ethers. The uncrosslinked fluoropolymer may be characterized as amorphous. The uncrosslinked fluoropolymer is soluble in fluorinated solvent. Also described are coated (e.g. copper) substrates, methods, and compositions.
Abstract:
Electronic telecommunication articles are described comprising a layer of fluoropolymer composition comprising a fluoropolymer or fluoropolymer blend comprising at least 1 wt. % and less than 30 wt. % of polymerized units of unsaturated (per)fluorinated alkyl ether(s). Also described are methods of making a coated substrate, a substrate comprising a fluoropolymer composition, and fluoropolymer compositions.
Abstract:
Methods of converting a variety of fluorinated materials into anhydrous hydrogen fluoride are described. The methods include thermally decomposing the fluorinated materials into a gaseous effluent comprising hydrogen fluoride and carbon dioxide. This gaseous effluent is then treated with carbon at a temperature of at least 830° C., converting the carbon dioxide to carbon monoxide (CO) and producing a gaseous product comprising the hydrogen fluoride, which can be condensed to generate anhydrous hydrogen fluoride. These methods can also be used to convert water contained in the gaseous effluent into hydrogen.
Abstract:
The present disclosure provides a process for removing fluoroorganic acidic compounds from a solution comprising at least one protic solvent, comprising: forming a mixture of a solution comprising at least one fluoroorganic acidic compound comprising less than 15 carbon atoms and protic solvent, wherein the solution has a pH of 4, with an extraction composition comprising at least one trialkylamine and organic solvent; reacting the fluoroorganic acidic compound with the trialkylamine to form a hydrophobic ionic compound comprising the anion of the fluoroorganic acidic compound and the cation of the trialkylamine; separating the mixture into a first phase comprising the protic solvent and at most 50 wt. % of the fluoroorganic acidic compound present in the initial solution; and a second phase comprising the organic solvent and hydrophobic ionic compound; removing the second phase from the first phase; and repeating steps aforementioned at least once more, wherein the first phase obtained in the last step is used as the initial solution.
Abstract:
Electronic telecommunication articles are described comprising a crosslinked fluoropolymer layer. In typical embodiments, the crosslinked fluoropolymer layer is a substrate, patterned (e.g. photoresist) layer, insulating layer, passivation layer, cladding, protective layer, or a combination thereof. Also describes are methods of making an electronic telecommunications article and method of forming a patterned fluoropolymer layer. The fluoropolymer preferably comprises at least 80, 85, or 90% by weight of polymerized units of perfluorinated monomers and cure sites selected from nitrile, iodine, bromine, and chlorine. Illustrative electronic communication articles include integrated circuits, printed circuit boards, antennas, and optical fiber cables. Fluoropolymer compositions are also described.
Abstract:
Provided are methods for making shaped fluoropolymer by additive processing using fluoropolymer particles, polymerizable binder and extraction with supercritical fluids. Also provided are 3D printable compositions for making shaped fluoropolymer articles and articles comprising a shaped fluoropolymer.
Abstract:
The copolymer includes divalent units represented by formula —[CF2—CF2]—, divalent units represented by formula: (I), and one or more divalent units independently represented by formula: (II) When Z is hydrogen, the copolymer has an alpha transition temperature of up to 100 ?C. The copolymer has an —SO3Z equivalent weight in a range from 300 to 1400, and a variation of the copolymer in which —SO3Z is replaced with —SO2F has a melt flow index of up to 80 grams per ten minutes measured at a temperature of 265° C. and at a support weight of 5 kg. A catalyst ink or polymer electrolyte membrane including the copolymer are also provided.