Structure for surface enhanced raman spectroscopy
    91.
    发明授权
    Structure for surface enhanced raman spectroscopy 有权
    表面增强拉曼光谱的结构

    公开(公告)号:US07965388B2

    公开(公告)日:2011-06-21

    申请号:US12416907

    申请日:2009-04-01

    IPC分类号: G01J3/44 G01N21/65

    摘要: A structure for surface enhanced Raman spectroscopy is disclosed herein. A substrate has a stack configured vertically thereon. The stack encompasses at least two metal layers and at least one dielectric layer therebetween. Each layer of the stack has a controlled thickness, and each of the at least two metal layers is configured to exhibit a predetermined characteristic of plasmonic resonance.

    摘要翻译: 本文公开了表面增强拉曼光谱的结构。 衬底具有垂直地配置的堆叠。 堆叠包括至少两个金属层和其间的至少一个电介质层。 堆叠的每个层具有受控的厚度,并且所述至少两个金属层中的每一个被配置为表现出等离子体共振的预定特性。

    TYPE SELECTIVE AND POLARIZATION SELECTIVE DEVICE FOR RAMAN SPECTROSCOPY
    92.
    发明申请
    TYPE SELECTIVE AND POLARIZATION SELECTIVE DEVICE FOR RAMAN SPECTROSCOPY 有权
    用于拉曼光谱的类型选择和极化选择装置

    公开(公告)号:US20100321685A1

    公开(公告)日:2010-12-23

    申请号:US12488318

    申请日:2009-06-19

    摘要: A type and polarization selective device for Raman spectroscopy includes a set of at least two antennas and a gap at their intersection. First antenna geometry is such that it is configured to resonate, for first or second (different from the first) polarization, at a predetermined stimulation frequency of a material for which Raman scattering is to be studied, or at a Stokes or anti-Stokes frequency corresponding with the material when excited at stimulation frequency. Second antenna geometry is such that it is configured to resonate, for the other of second or first polarization, at the Stokes frequency when the first antenna is configured to resonate at the stimulation or anti-Stokes frequency, or at the anti-Stokes frequency when the first antenna is configured to resonate at the stimulation or Stokes frequency, or at the stimulation frequency when the first antenna is configured to resonate at the Stokes or anti-Stokes frequency.

    摘要翻译: 用于拉曼光谱的类型和偏振选择装置包括至少两个天线的集合和它们的相交处的间隙。 第一天线几何形状使得其被配置为在要研究拉曼散射的材料的预定刺激频率下或在斯托克斯或反斯托克斯频率下谐振第一或第二(不同于第一极化)的极化 在刺激频率下激发时对应材料。 第二天线几何形状使得当第一天线被配置为以刺激或反斯托克斯频率或反斯托克斯频率谐振时,或者在反斯托克斯频率下,当第二天线几何形状被配置为对于第二或第一极化中的另一个以斯托克斯频率谐振, 第一天线被配置为在刺激或斯托克斯频率或刺激频率下谐振,当第一天线被配置为以斯托克斯或反斯托克斯频率谐振时。

    Surface enhanced raman spectroscopy with periodically deformed sers-active structure
    93.
    发明申请
    Surface enhanced raman spectroscopy with periodically deformed sers-active structure 有权
    表面增强拉曼光谱与周期性变形的主动结构

    公开(公告)号:US20080270042A1

    公开(公告)日:2008-10-30

    申请号:US11796455

    申请日:2007-04-26

    IPC分类号: G01J3/44

    CPC分类号: G01N21/658

    摘要: An apparatus and related methods for facilitating surface-enhanced Raman spectroscopy (SERS) is described. A SERS-active structure near which a plurality of analyte molecules is disposed is periodically deformed at an actuation frequency. A synchronous measuring device synchronized with the actuation frequency receives Raman radiation scattered from the analyte molecules and generates therefrom at least one Raman signal measurement.

    摘要翻译: 描述了用于促进表面增强拉曼光谱(SERS)的装置和相关方法。 多个分析物分子附近的SERS-活性结构以致动频率周期性地变形。 与致动频率同步的同步测量装置接收从分析物分子散射的拉曼辐射,并由此产生至少一个拉曼信号测量。

    Systems and methods for detection of Raman scattered photons

    公开(公告)号:US20080094620A1

    公开(公告)日:2008-04-24

    申请号:US11584020

    申请日:2006-10-20

    IPC分类号: G01J3/44 G01N21/65

    CPC分类号: G01J3/44 G01N21/658

    摘要: Raman spectroscopy systems include an analyte, a radiation source configured to emit incident radiation having a wavelength, and a detector that is capable of detecting only radiation having wavelengths within a detectable range that includes at least one wavelength corresponding to hyper Raman scattered radiation scattered by the analyte. The wavelength of the incident radiation is outside the detectable range. In particular systems, all wavelengths of radiation that are scattered in the direction of the detector impinge on the detector. Raman spectroscopy methods include providing an analyte and irradiating the analyte with incident radiation having a wavelength, providing a detector capable of detecting only wavelengths of radiation within a detectable range that does not include the wavelength of the incident radiation, and detecting Raman scattered radiation scattered by the analyte. A continuous path free of radiation filters may be provided between the analyte and the detector.

    Raman signal-enhancing structures and devices
    95.
    发明授权
    Raman signal-enhancing structures and devices 有权
    拉曼信号增强结构和器件

    公开(公告)号:US07359048B2

    公开(公告)日:2008-04-15

    申请号:US11413910

    申请日:2006-04-28

    IPC分类号: G01J3/44 G01N21/65

    CPC分类号: G01N21/658 G01J3/44

    摘要: Raman systems include a radiation source, a radiation detector, and a Raman device or signal-enhancing structure. Raman devices include a tunable resonant cavity and a Raman signal-enhancing structure coupled to the cavity. The cavity includes a first reflective member, a second reflective member, and an electro-optic material disposed between the reflective members. The electro-optic material exhibits a refractive index that varies in response to an applied electrical field. Raman signal-enhancing structures include a substantially planar layer of Raman signal-enhancing material having a major surface, a support structure extending from the major surface, and a substantially planar member comprising a Raman signal-enhancing material disposed on an end of the support structure opposite the layer of Raman signal-enhancing material. The support structure separates at least a portion of the planar member from the layer of Raman signal-enhancing material by a selected distance of less than about fifty nanometers.

    摘要翻译: 拉曼系统包括辐射源,辐射检测器和拉曼器件或信号增强结构。 拉曼器件包括耦合到空腔的可调谐谐振腔和拉曼信号增强结构。 空腔包括第一反射构件,第二反射构件和设置在反射构件之间的电光材料。 电光材料表现出响应于所施加的电场而变化的折射率。 拉曼信号增强结构包括具有主表面的基本平坦的拉曼信号增强材料层,从主表面延伸的支撑结构和包括设置在支撑结构的端部上的拉曼信号增强材料的基本上平面的构件 与拉曼信号增强材料层相对。 支撑结构将平面构件的至少一部分与拉曼信号增强材料层分开小于约五十纳米的选定距离。

    Dynamically variable separation among nanoparticles for nano-enhanced Raman spectroscopy (NERS) molecular sensing
    96.
    发明授权
    Dynamically variable separation among nanoparticles for nano-enhanced Raman spectroscopy (NERS) molecular sensing 有权
    用于纳米增强拉曼光谱(NERS)分子感测的纳米颗粒之间的动态变化分离

    公开(公告)号:US07342656B2

    公开(公告)日:2008-03-11

    申请号:US11252134

    申请日:2005-10-17

    IPC分类号: G01J3/44 G01N21/65

    CPC分类号: G01N21/658

    摘要: A NERS-active structure includes a deformable, active nanoparticle support structure for supporting a first nanoparticle and a second nanoparticle that is disposed proximate the first nanoparticle. The nanoparticles each comprise a NERS-active material. The deformable, active nanoparticle support structure is configured to vary the distance between the first nanoparticle and the second nanoparticle while performing NERS. Various active nanoparticle support structures are disclosed. A NERS system includes such a NERS-active structure, a radiation source for generating radiation scatterable by an analyte located proximate the NERS-active structure, and a radiation detector for detecting Raman scattered radiation scattered by the analyte. A method for performing NERS includes providing such a NERS-active structure, providing an analyte at a location proximate the NERS-active structure, irradiating the NERS-active structure and the analyte with radiation, varying the distance between the nanoparticles, and detecting Raman scattered radiation scattered by the analyte.

    摘要翻译: NERS活性结构包括用于支撑第一纳米颗粒的可变形的活性纳米颗粒支撑结构和邻近第一纳米颗粒设置的第二纳米颗粒。 纳米颗粒各自包含NERS-活性材料。 可变形的活性纳米颗粒支撑结构被配置为在执行NERS的同时改变第一纳米颗粒和第二纳米颗粒之间的距离。 公开了各种活性纳米颗粒载体结构。 NERS系统包括这样的NERS-活性结构,用于产生由位于NERS-活性结构附近的分析物可散射的辐射的辐射源,以及用于检测被分析物散射的拉曼散射辐射的辐射检测器。 执行NERS的方法包括提供这样的NERS活性结构,在靠近NERS-活性结构的位置提供分析物,用辐射照射NERS-活性结构和分析物,改变纳米颗粒之间的距离并检测拉曼散射 被分析物散射的辐射。

    Method and apparatus for detection of molecules using nanopores
    97.
    发明申请
    Method and apparatus for detection of molecules using nanopores 审中-公开
    使用纳米孔检测分子的方法和装置

    公开(公告)号:US20070178507A1

    公开(公告)日:2007-08-02

    申请号:US11655388

    申请日:2007-01-19

    IPC分类号: C12Q1/68 G01N33/53 C12M3/00

    摘要: A molecular analysis device comprises a molecule sensor and a nanopore that passes through, partially through, or substantially near the molecule sensor. The molecule sensor may comprise a single electron transistor including a first terminal, a second terminal, and a nanogap or at least one quantum dot positioned between the first terminal and the second terminal. The molecular sensor may also comprise a nanowire that operably couples a first and a second terminal. A nitrogenous material that may be disposed on at least part of the molecule sensor is configured for a chemical interaction with an identifiable configuration of a molecule. The molecule sensor develops an electronic effect responsive to a molecule or responsive to a chemical interaction.

    摘要翻译: 分子分析装置包括分子传感器和穿过分子传感器部分通过或基本上接近分子传感器的纳米孔。 分子传感器可以包括单电子晶体管,其包括位于第一端子和第二端子之间的第一端子,第二端子和纳米隙隙或至少一个量子点。 分子传感器还可以包括可操作地连接第一和第二端子的纳米线。 可以设置在分子传感器的至少一部分上的含氮材料被配置为与分子的可识别构型的化学相互作用。 分子传感器产生响应于分子或响应于化学相互作用的电子效应。

    Method and apparatus for molecular analysis using nanowires
    98.
    发明申请
    Method and apparatus for molecular analysis using nanowires 审中-公开
    使用纳米线分子分析的方法和装置

    公开(公告)号:US20060275779A1

    公开(公告)日:2006-12-07

    申请号:US11144588

    申请日:2005-06-03

    IPC分类号: C12Q1/68 C12M1/34

    摘要: Devices and methods for detecting the constituent parts of biological polymers are disclosed. A molecular analysis device comprises a molecule sensor and a molecule guide. The molecule sensor comprises a nanowire operably coupling a first terminal and a second terminal and a nitrogenous material disposed on the nanowire. The nitrogenous material is configured to interact with an identifiable configuration of a molecule such that the molecule sensor develops a conductance change responsive to the interaction. The molecule guide is configured for guiding at least a portion of the molecule near the molecule sensor to enable the interaction.

    摘要翻译: 公开了用于检测生物聚合物的组成部分的装置和方法。 分子分析装置包括分子传感器和分子引导件。 分子传感器包括可操作地耦合第一端子和第二端子的纳米线和设置在纳米线上的含氮材料。 含氮材料被配置为与分子的可识别构型相互作用,使得分子传感器响应于相互作用产生电导变化。 分子引导件被配置用于引导分子传感器附近的分子的至少一部分以实现相互作用。

    Massaging devices
    99.
    发明授权

    公开(公告)号:US09987192B2

    公开(公告)日:2018-06-05

    申请号:US14603786

    申请日:2015-01-23

    申请人: Wei Wu

    发明人: Wei Wu

    IPC分类号: A61H19/00 A61H23/02

    摘要: A massaging device is provided. The massaging device includes a shell having first end and a second end, the first end being a massaging head, a size and a shape of the shell configured to massage a body part of a user. The massaging device also includes an opening disposed close to the second end. The massaging device further includes a housing to house a vibrating motor, the housing configured to be inserted into the shell through the opening. The massaging device also includes a rolling member disposed at the opening, and the rolling member is configured to control the vibration of the vibrating motor when being operated by a user.