摘要:
A method includes forming a plurality of functional features on a semiconductor layer in a first region. A non-functional feature corresponding to the functional feature is formed adjacent at least one of the functional features disposed on a periphery of the region. A stress-inducing layer is formed over at least a portion of the functional features and the non-functional feature. A device includes a semiconductor layer, a first dummy gate electrode, and a stress-inducing layer. The plurality of transistor gate electrodes is formed above the semiconductor layer. The plurality includes at least a first end gate electrode, a second end gate electrode, and at least one interior gate electrode. The first dummy gate electrode is disposed proximate the first end gate electrode. The stress-inducing layer is disposed over at least a portion of the plurality of transistor gate electrodes and the first dummy gate electrode.
摘要:
Semiconductor devices exhibiting reduced gate resistance and reduced silicide spiking in source/drain regions are fabricated by forming thin metal silicide layers on the gate electrode and source/drain regions and then selectively resilicidizing the gate electrodes. Embodiments include forming the thin metal silicide layers on the polysilicon gate electrodes and source/drain regions, depositing a dielectric gap filling layer, as by high density plasma deposition, etching back to selectively expose the silicidized polysilicon gate electrodes and resilicidizing the polysilicon gate electrodes to increase the thickness of the metal silicide layers thereon. Embodiments further include resilicidizing the polysilicon gate electrodes including a portion of the upper side surfaces forming mushroom shaped metal silicide layers.
摘要:
A method of manufacturing a semiconductor device includes providing a silicon semiconductor layer over an insulating layer, and partially removing a first portion of the silicon layer. The silicon layer includes the first portion and a second portion, and a thickness of the second portion is greater than a thickness of the first portion. Initially, the first and second portions of the silicon layer initially can have the same thickness. A semiconductor device is also disclosed.
摘要:
A method for fabricating an integrated circuit is presented wherein a first polysilicon layer dielectrically spaced above a semiconductor substrate is provided. The semiconductor substrate contains a first active region and a second active region. A first dopant is selectively introduced into the portion of the first polysilicon layer above the second active region. A second polysilicon layer may then be formed upon the first polysilicon layer and above the first active region and the second active region. A second dopant may be selectively introduced into a portion of the second polysilicon layer above the first active region. The portion of the second polysilicon layer above the first active region and the portion of the first polysilicon layer above the first active region may be patterned to form a first gate structure within the first active region. The portion of the second polysilicon layer above the second active region and the portion of the first polysilicon layer above the second active region may be patterned to form a second gate structure within the second active region.
摘要:
A method includes receiving design data associated with an integrated circuit device. The integrated circuit device includes a first element having a corner defined therein and a second element overlapping the first element. A dimension specified for the first element in the design data is adjusted based on a distance between the second element and the corner. The integrated circuit device is simulated based on the adjusted dimension.
摘要:
The present invention is directed to a contact resistance test structure and methods of using same. In one illustrative embodiment, the method includes forming a test structure comprised of two gate electrode structures, forming a plurality of conductive contacts to a doped region between the two gate electrode structures, forcing a current through the test structure and determining a resistance of at least one of the conductive contacts based upon, in part, the forced current.
摘要:
The present invention is directed to methods of quantifying variations resulting from manufacturing-induced corner rounding of various features, and structures for testing same. In one illustrative embodiment, the method includes forming a plurality of test structures on a semiconducting substrate, each of the test structures having at least one physical dimension that varies relative to the other of the plurality of test structures, at least some of the test structures exhibiting at least some degree of manufacturing-induced corner rounding, forming at least one reference test structure, performing at least one electrical test on the plurality of test structures and on the reference test structure to thereby produce electrical test results, and analyzing the test results to determine an impact of the manufacturing-induced corner rounding on the performance of the plurality of test structures.
摘要:
A test structure includes first and second combs, at least a first pair of base nodes, and a second pair of finger nodes. The first comb includes a first base and a first plurality of fingers extending from the first base. The second comb includes a second base and a second plurality of fingers extending from the second base. At least a portion of the first and second pluralities of fingers are interleaved. The first pair of base nodes extend from the first base. The second pair of finger nodes extend from a first finger of the first plurality of fingers.
摘要:
Accurate determination of gate dielectric thickness is required to produce high-reliability and high-performance ultra-thin gate dielectric semiconductor devices. Large area gate dielectric capacitors with ultra-thin gate dielectric layers suffer from high gate leakage, which prevents the accurate measurement of gate dielectric thickness. Accurate measurement of gate dielectric thickness of smaller area gate dielectric capacitors is hindered by the relatively large parasitic capacitance of the smaller area capacitors. The formation of first and second dummy structures on a wafer allow the accurate determination of gate dielectric thickness. First and second dummy structures are formed that are substantially similar to the gate dielectric capacitors except that the first dummy structures are formed without the second electrode of the capacitor and the second dummy structures are formed without the first electrode of the capacitor structure. The capacitance, and therefore thickness, of the gate dielectric capacitor is determined by subtracting the parasitic capacitances measured at the first and second dummy structures.
摘要:
The present invention relates to a method for fabricating MOS transistors with reduced parasitic capacitance. The present invention is based upon recognition that the parasitic capacitance of MOS transistors, such as are utilized in the manufacture of CMOS and IC devices, can be reduced by use of sidewall spacers having an optimized cross-sectional shape, in conjunction with an overlying insulator layer comprised of a low-k dielectric material.