Abstract:
A method of making an aluminum alloy containing zirconium includes heating a first composition comprising aluminum to a first temperature of greater than or equal to about 580° C. to less than or equal to about 800° C. The method further includes adding a second composition including a copper-zirconium compound to the first composition to form a third composition. The copper-zirconium compound of the second composition has a molar composition of greater than or equal to about 41% zirconium to less than or equal to about 67% zirconium and a balance of copper. The method also includes solidifying the third composition at a cooling rate of greater than or equal to about 0.1° C./second to less than or equal to about 100° C./second to a second temperature less than or equal to a solidus temperature and decomposing the copper-zirconium compound at a third temperature of less than or equal to about 715° C.
Abstract:
A method for metallurgically bonding a cylinder liner in a bore in an engine block includes axially aligning the cylinder liner with a bore in the engine block, rotating the cylinder liner about the aligned axis, and translating the cylinder liner along the aligned axis to position the cylinder liner within the bore.
Abstract:
A method of manufacturing an aluminum alloy cylinder head includes providing a mold assembly including a gating system, a head deck mold, and a mold cavity. Liquid aluminum alloy is pumped at low pressure into the gating system of the mold assembly filling the mold cavity. Next, the head deck mold is removed from the mold assembly and the head deck and combustion chambers of the cylinder head are quenched.
Abstract:
A method of forming a bi-metallic casting. The method includes providing a metal preform of a desired base shape defining a substrate surface and removing a natural oxide layer and surface contamination from the substrate surface to yield a cleaned metal preform. The method further includes galvanizing the cleaned metal preform, yielding a galvanized metal preform followed by electroplating a thin nickel film on at least a portion of the substrate surface of the galvanized metal preform. Additionally, the method includes metallurgically bonding the portion of the metal preform having the nickel film with an overcast metal to form a bi-metallic casting. The nickel film promotes a metallurgical bond between the metal preform and the overcast metal.
Abstract:
A method of simulating aluminum oxides defects in aluminum castings comprises determining the free surface area for a plurality of particles of aluminum in an aluminum melt, storing the free surface area for each particle of aluminum, tracking the free surface area change during mold filling, and calculating the total area of entrained or surface oxide films based on the free surface area change during mold filling. The method may further comprise a scalar variable method and a discrete particle method coupled together to simulate the aluminum oxide defects in aluminum castings.
Abstract:
Copper-free aluminum alloys suitable for high pressure die casting and capable of age-hardening under elevated temperatures. The alloy includes about 7-15 wt % silicon, about 0 to 0.6 wt % magnesium, about 0 to 1.0 wt % iron, about 0 to 1.0 wt % manganese, about 0 to 1.0 wt % zinc, about 0 to 0.1 wt % strontium, about 0 to 0.5 wt % titanium, about 0 to 0.5 wt % zirconium, about 0 to 0.5 wt % vanadium, about 0 to 0.5 wt % copper, and about 0 to 1.0 wt % nickel, with a balance of aluminum. Methods for making high pressure die castings and castings manufactured from the alloy.
Abstract:
A method of forming a bi-metallic casting. The method includes providing a metal preform of a desired base shape defining a substrate surface and removing a natural oxide layer and surface contamination from the substrate surface to yield a cleaned metal preform. The method further includes galvanizing the cleaned metal preform, yielding a galvanized metal preform followed by electroplating a thin nickel film on at least a portion of the substrate surface of the galvanized metal preform. Additionally, the method includes metallurgically bonding the portion of the metal preform having the nickel film with an overcast metal to form a bi-metallic casting. The nickel film promotes a metallurgical bond between the metal preform and the overcast metal.
Abstract:
An aluminum alloy that can be cast into structural components wherein at least some of the raw materials used to produce the alloy are sourced from secondary production sources. In addition to aluminum as the primary constituent, such an alloy includes 5 to 14% silicon, 0 to 1.5% copper, 0.2 to 0.55% magnesium, 0.2 to 1.2% iron, 0.1 to 0.6% manganese, 0 to 0.5% nickel, 0 to 0.8% zinc, 0 to 0.2% of other trace elements selected from the group consisting essentially of titanium, zirconium, vanadium, molybdenum and cobalt. In a preferred form, most of the aluminum is from a secondary production source. Methods of analyzing a secondary production aluminum alloy to determine its constituent makeup is also disclosed, as is a method of adjusting the constituent makeup of such an alloy in situations where the alloy is out of tolerance when measured against its primary source counterpart.
Abstract:
A computer-implemented system and method of rapidly predicting at least one of residual stress and distortion of a quenched aluminum casting. Input data corresponding to at least one of topological features, geometrical features and quenching process parameters associated with the casting is operated upon by the computer that is configured as a neural network to determine output data corresponding to at least one of the residual stress and distortion based on the input data. The neural network is trained to determine the validity of at least one of the input data and output data and to retrain the network when an error threshold is exceeded. Thereby, residual stresses and distortion in the quenched aluminum castings can be predicted using the embodiments in a tiny fraction of the time required by conventional finite-element based approaches.
Abstract:
Integrated devices and methods for compensating electric grade steel lamination stack height for use in a conventional two-plate high pressure die cast tool used for casting aluminum induction rotors. These devices and methods allow for significant variation in the lamination stack height without associated failures related to stack height variation, and also ensure constant and accurate clamping pressure on both the OD and ID of the steel lamination stack which prevents electric insulation damage, metal flow between laminations, large casting metal flash, and tool damage for excessive height laminations stacks. The clamping pressure is adjustable and is actuated from a single hydraulic cylinder which allows for a wide range of pressures to accommodate fine adjustment of clamping pressure to insure no damage occurs to the laminations.