摘要:
A non-volatile memory device includes an array of non-volatile memory cells configured to support single bit and multi-bit programming states. A control circuit is provided, which is configured to program a first page of non-volatile memory cells in the array as M-bit cells during a first programming operation and further configured to program the first page of non-volatile memory cells as N-bit cells during a second programming operation. The first and second programming operations are separated in time by at least one operation to erase the first page of non-volatile memory cells. M and N are unequal integers greater than zero.
摘要:
Provided is a nonvolatile memory device having a three dimensional structure. The nonvolatile memory device includes a plurality of stacked semiconductor layers and a plurality of memory cell transistors which is formed on each of a plurality of semiconductor layers and serially connected. Memory cell transistors disposed on different semiconductor layers are serially connected to include one cell string forming a current path in a plurality of semiconductor layers, a first selection transistor serially connected to one edge portion of the cell string and a second selection transistor serially connected to the other edge portion of the cell string.
摘要:
A method of manufacturing a non-volatile memory device includes sequentially depositing a first insulation layer, a charge storage layer, and a second insulation layer on a substrate, forming a first opening through the resultant structure to expose the substrate, forming second and third openings through the second insulation layer to form a second insulation layer pattern, forming a conductive layer on the second insulation layer pattern, forming a photoresist pattern structure on the conductive layer, and forming simultaneously a common source line, at least one ground selection line, at least one string selection line, and a plurality of gate structures on the substrate by etching through the photoresist pattern structure, wherein the common source line and the gate structures are formed simultaneously on a substantially same level and of substantially same components.
摘要:
A non-volatile memory device includes a substrate, resistance patterns, a gate dielectric layer, a gate electrode pattern, a first impurity region and a second impurity region. The substrate has recesses. The recesses are filled with the resistance patterns. The resistance patterns include a material having a resistance that is variable in accordance with a voltage applied thereto. The gate dielectric layer is formed on the substrate. The gate electrode pattern is formed on the gate dielectric layer. The first and second impurity regions are formed in the substrate. The first impurity region and the second impurity region contact side surfaces of the resistance patterns. Further, the resistance patterns, the first impurity region and the second impurity region define a channel region. Thus, the non-volatile memory device may store data using a variable resistance of the resistance patterns so that the non-volatile memory device may have excellent operational characteristics.
摘要:
A dual display module having a first display panel and a second display panel, the dual display module including a bezel arranged between the first display panel and the second display panel, and having a penetration area between the first display panel and the second display panel; and a supporting member arranged between the bezel and the second display panel and supporting the second display panel, the supporting member having at least one protrusion unit that protrudes through the penetration area to face the first display panel.
摘要:
A method of forming a fin transistor using a damascene process is provided. A filling mold insulation pattern is recessed to expose an upper portion of a fin, and a mold layer is formed. The mold layer is patterned to form a groove crossing the fin and exposing a part of the upper portion of the fin. A gate electrode is formed to fill the groove with a gate insulation layer interposed between the fin and the gate electrode, and the mold layer is removed. Impurities are implanted through both sidewalls and a top surface of the upper portion of the fin disposed at opposite sides of a gate electrode to form a source/drain region.
摘要:
A non-volatile memory device and a method of forming the same are provided. The non-volatile memory device may include a cell isolation pattern and a semiconductor pattern sequentially stacked on a predetermined or given region of a semiconductor substrate, a cell gate line on the semiconductor pattern and on a top surface of the semiconductor substrate on one side of the cell isolation pattern, a multi-layered trap insulation layer between the cell gate line and the semiconductor substrate, and the cell gate line and the semiconductor pattern, a first impurity diffusion layer in the semiconductor substrate on both sides of the cell gate line and a second impurity diffusion layer in the semiconductor pattern on both sides of the cell gate line.
摘要:
An integrated circuit device containing complementary metal oxide semiconductor transistors includes a semiconductor substrate and an NMOS transistor having a first fin-shaped active region that extends in the semiconductor substrate. The first fin-shaped active region has a first channel region therein with a first height. A PMOS transistor is also provided. The PMOS transistor has a second fin-shaped active region that extends in the semiconductor substrate. This second fin-shaped active region has a second channel region therein with a second height unequal to the first height.
摘要:
In a method of fabricating a semiconductor device having both a MCFET and a finFET on a common substrate, a first hard mask pattern and a second hard mask pattern are formed on a substrate, the second hard mask pattern having a width in a horizontal direction that is less than that of the first hard mask pattern, and the second hard mask pattern being spaced apart from the first hard mask pattern. The substrate is partially removed using the first and second hard mask patterns as etch masks, and forming a preliminary multi-fin structure below the first hard mask pattern and a single fin structure below the second hard mask pattern. A concave portion is formed in the preliminary multi-fin structure to form a multi-fin structure.
摘要:
A fin field effect transistor (fin FET) is formed using a bulk silicon substrate and sufficiently guarantees a top channel length formed under a gate, by forming a recess having a predetermined depth in a fin active region and then by forming the gate in an upper part of the recess. A device isolation film is formed to define a non-active region and a fin active region in a predetermined region of the substrate. In a portion of the device isolation film a first recess is formed, and in a portion of the fin active region a second recess having a depth shallower than the first recess is formed. A gate insulation layer is formed within the second recess, and a gate is formed in an upper part of the second recess. A source/drain region is formed in the fin active region of both sides of a gate electrode.