摘要:
Replacement metal gates may be formed by removing a polysilicon layer from a gate structure. The gate structure may be formed by patterning the polysilicon layer and depositing a spacer layer over the gate structure such that the spacer layer has a first polish rate. The spacer layer is then etched to form a sidewall spacer. An interlayer dielectric is applied over the gate structure with the sidewall spacer. The interlayer dielectric has a second polish rate higher than the first polish rate. A hard mask may also be applied over the gate structure and implanted so that the hard mask may be more readily removed.
摘要:
At least a p-type and n-type semiconductor device deposited upon a semiconductor wafer containing metal or metal alloy gates. More particularly, a complementary metal-oxide-semiconductor (CMOS) device is formed on a semiconductor wafer having n-type and p-type metal gates.
摘要:
At least a p-type and n-type semiconductor device deposited upon a semiconductor wafer containing metal or metal alloy gates. More particularly, a complementary metal-oxide-semiconductor (CMOS) device is formed on a semiconductor wafer having n-type and p-type metal gates.
摘要:
A method of manufacturing a semiconductor device and a novel semiconductor device are disclosed herein. An exemplary method includes sputtering a capping layer in-situ on a gate dielectric layer, before any high temperature processing steps are performed.
摘要:
A multi-body thickness (MBT) field effect transistor (FET) comprises a silicon body formed on a substrate. The silicon body may comprise a wide section and a narrow section between the wide section and the substrate. The silicon body may comprise more than one pair of a wide section and a narrow section, each pair being located at a different height of the silicon body. The silicon body is surrounded by a gate material on three sides. The substrate may be a bulk silicon substrate or a silicon-on-insulator (SOI) substrate. The MBT-FET combines the advantages of a wide fin device and a narrow fin device.
摘要:
The fabrication of a tri-gate transistor formed with a replacement gate process is described. A nitride dummy gate, in one embodiment, is used allowing the growth of epitaxial source and drain regions immediately adjacent to the dummy gate. This reduces the external resistance.
摘要:
Described herein are a device utilizing a gate electrode material with a single work function for both the pMOS and nMOS transistors where the magnitude of the transistor threshold voltages is modified by semiconductor band engineering and article made thereby. Further described herein are methods of fabricating a device formed of complementary (pMOS and nMOS) transistors having semiconductor channel regions which have been band gap engineered to achieve a low threshold voltage.
摘要:
Embodiments of the invention provide a substrate with a surface having different crystal orientations in different areas. Embodiments of the invention provide a substrate with a portion having a crystal orientation and another portion having a crystal orientation. N— and P-type devices may both be formed on the substrate, with each type of device having the proper crystal orientation for optimum performance.
摘要:
Embodiments of the invention provide a device with a multiple gates. Stress material within recesses of a device body metal gate may cause a stress in channel regions of the device, thereby improving performance of the device.
摘要:
A structure to form an energy well within a Carbon nanotube is described. The structure includes a doped semiconductor region and an undoped semiconductor region. The Carbon nanotube is between the doped semiconductor region and the undoped semiconductor region. The structure also includes a delta doped semiconductor region. The undoped semiconductor region is between the Carbon nanotube and the delta doped region. The delta doped semiconductor region is doped opposite that of the doped semiconductor region.