Abstract:
A restart circuit for causing an electronic ballast to perform a restart in response to reconnecting any lamp of a multiple lamp configuration of the electronic ballast to the electronic ballast is disclosed. The electronic ballast includes a filament health check circuit for providing a first current through a monitored filament of the lamps to a controller of the ballast. The controller restarts the electronic ballast when a determined ratio of the first current to a reference current indicates that the monitored filament has been disconnected or broken (i.e., the first current substantially decreases) and is subsequently replaced or reconnected to the ballast (i.e., the first current returns to a predetermined level). The ballast further comprises a dv/dt circuit for reducing the first current for a transient time period in response to reconnecting a filament other than the monitored filament to the ballast, causing the controller to restart the ballast.
Abstract:
Combinatorial processing including stirring is described, including defining multiple regions of a substrate, processing the multiple regions of the substrate in a combinatorial manner, introducing a fluid into a first aperture at a first end of a body to dispense the fluid out of a second aperture at a second end of the body and into one of the multiple regions, and agitating the fluid using an impeller at a second end of the body to facilitate interaction of the fluid with a surface of the substrate.
Abstract:
A control circuit for use in a ballast configured for powering a first lamp set and a second lamp set. The second lamp set is operated via a controller and a second lamp driver circuit. The controller enables the second lamp driver circuit as a function of a monitored value corresponding to a current through a lamp of the second lamp set. The control circuit includes first and second input terminals for selectively connecting to the power supply. The control circuit reduces the monitored value as a function of a connection state of the first and second input terminals of the control circuit to the power supply. Thus, the control circuit causes the controller to selectively operate the second lamp driver circuit in order to energize the second lamp set in combination with the first lamp set.
Abstract:
A mobile computing device comprises a wireless transceiver and a processing circuit. The processing circuit is configured to store a data set for a predetermined location, the data set comprising location data and a location name. The processing circuit is further configured to compare a current location to the location data, to compare an updated location to the location data at a time calculated based on heuristic data, and to generate a notification message based on the mobile computing device arriving at or near the predetermined location.
Abstract:
Methods for substrate processing are described. The methods include forming a material layer on a substrate. The methods include selecting constituents of a molecular masking layer (MML) to remove an effect of variations in the material layer as a result of substrate processing. The methods include normalizing the surface characteristics of the material layer by selectively depositing the MML on the material layer.
Abstract:
Embodiments of the current invention include methods of improving a process of forming a textured TCO film by combinatorial methods. The combinatorial method may include depositing a TCO by physical vapor deposition or sputtering, annealing the TCO, and etching the TCO where at least one of the depositing, the annealing, or the etching is performed combinatorially. Embodiments of the current invention also include improved methods of forming the TCO based on the results of combinatorial testing.
Abstract:
Embodiments of the current invention describe a cleaning solution for the removal of high dose implanted photoresist, along with methods of applying the cleaning solution to remove the high dose implanted photoresist and combinatorially developing the cleaning solution.
Abstract:
A system and method is provided that eliminates DC bias on at least one of a first electrolytic capacitor and a second electrolytic capacitor of a bipolar junction transistor (BJT) based inverter ballast having a shutdown control circuit in association with only one of at least two BJT switches. A duty cycle dependent capacitor is connected in a series with a bus of the ballast, and a resonant circuit, including primary winding of the output transformer and a resonant capacitor. A balancing/charging resistor is connected at one end between the first electrolytic capacitor and the second electrolytic capacitor, and at another end to the duty cycle dependent capacitor and the resonant circuit.
Abstract:
Combinatorial processing including stirring is described, including defining multiple regions of a substrate, processing the multiple regions of the substrate in a combinatorial manner, introducing a fluid into a first aperture at a first end of a body to dispense the fluid out of a second aperture at a second end of the body and into one of the multiple regions, and agitating the fluid using an impeller at a second end of the body to facilitate interaction of the fluid with a surface of the substrate.
Abstract:
Methods for substrate processing are described. The methods include forming a material layer on a substrate. The methods include selecting constituents of a molecular masking layer (MML) to remove an effect of variations in the material layer as a result of substrate processing. The methods include normalizing the surface characteristics of the material layer by selectively depositing the MML on the material layer.