Abstract:
Systems and methods of generating and regenerating peritoneal dialysate are provided. The systems and methods use a dialysate regeneration module, a sterilization module and concentrates to prepare peritoneal dialysate from used peritoneal dialysate or source water. An optional integrated cycler for direct infusion of the generated peritoneal dialysate is included. Optional dialysate storage containers are provided for storage of the peritoneal dialysate prior to use.
Abstract:
The present invention is directed to an implantable drug depot useful for reducing, preventing or treating post-operative pain in a patient in need of such treatment, the implantable drug depot comprising a therapeutically effective amount of clonidine or pharmaceutically acceptable salt thereof and a polymer; wherein the depot is implantable at a site beneath the skin to reduce, prevent or treat post-operative pain, and the depot is capable of releasing (i) about 5% to about 45% of the clonidine or pharmaceutically acceptable salt thereof relative to a total amount of the clonidine or pharmaceutically acceptable salt thereof loaded in the drug depot over a first period of up to 48 hours and (ii) about 55% to about 95% of the clonidine or pharmaceutically acceptable salt thereof relative to a total amount of the clonidine or pharmaceutically acceptable salt thereof loaded in the drug depot over a subsequent period of at least 3 days.
Abstract:
An apparatus and method for replenishing urease in a sorbent cartridge for use in sorbent dialysis using urease pouches. The sorbent cartridge is configured to allow insertion of a urease pouch or injection of a urease solution into the sorbent cartridge containing a urease pouch. The sorbent module can also comprise other, rechargeable, sorbent materials for removing toxins other than urea from spent dialysate.
Abstract:
A sorbent pouch for use in sorbent dialysis. The sorbent pouch allows for fluid to freely pass into and through the sorbent materials, while keeping the sorbent materials inside the sorbent pouch.
Abstract:
The present invention is directed to an implantable drug depot useful for reducing, preventing or treating post-operative pain in a patient in need of such treatment, the implantable drug depot comprising a therapeutically effective amount of clonidine or pharmaceutically acceptable salt thereof and a polymer; wherein the depot is implantable at a site beneath the skin to reduce, prevent or treat post-operative pain, and the depot is capable of releasing (i) about 5% to about 45% of the clonidine or pharmaceutically acceptable salt thereof relative to a total amount of the clonidine or pharmaceutically acceptable salt thereof loaded in the drug depot over a first period of up to 48 hours and (ii) about 55% to about 95% of the clonidine or pharmaceutically acceptable salt thereof relative to a total amount of the clonidine or pharmaceutically acceptable salt thereof loaded in the drug depot over a subsequent period of at least 3 days.
Abstract:
The invention relates to systems and methods for making intracycle adjustments to an osmotic agent concentration of peritoneal dialysate inside the peritoneal cavity of a patient. The systems and methods include osmotic agent sources, flow paths, and processors to adjust the osmotic agent concentration of dialysate in the peritoneal cavity of the patient. The method can include infusing peritoneal dialysate containing an osmotic agent into the peritoneal cavity of a patient; monitoring one or more patient parameters; and adjusting the osmotic agent concentration of the peritoneal dialysate in the peritoneal cavity of the patient by infusing a concentrated osmotic agent solution or by infusing sterile fluid into the peritoneal cavity of the patient using an on-line peritoneal dialysis machine. The system can include a peritoneal dialysis cycler.
Abstract:
The invention relates to devices, systems, and methods for conditioning a zirconium oxide sorbent module for use in dialysis after recharging. The devices, systems, and methods can provide for conditioning and recharging of zirconium oxide in a single system, or in separate systems.
Abstract:
The invention relates to a testing system and related methods for detecting peritonitis or infection in peritoneal dialysate removed from a patient. The testing system can include a fluid sensor apparatus in a fluid line of a peritoneal dialysis cycler through which spent peritoneal dialysate can be pumped. The fluid sensor apparatus can detect one or more markers associated with peritonitis or infection.
Abstract:
A system and method for determining the amount of fluid to be removed from a dialysis patient is disclosed. The system utilizes sensors and a computer. The computer obtains the input parameters from the sensors, along with information added directly by the user, and performs a forward algorithm to determine a recommended change in patient fluid level. As fluid is removed, the effect of the removal on the parameters is detected by the sensors and re-transmitted back to the computer. The computer then performs a backward algorithm to refine the variables used in the forward algorithm and obtain more accurate results. The system and method provide for changing the amount of fluid removed from the patient based on the results of the algorithm and the data received from the sensors.
Abstract:
A stacked sorbent assembly for use in sorbent dialysis. The stacked sorbent assembly contains two or more interchangeable sorbent pouches that allow for fluid to freely pass into and through the sorbent materials, while keeping the sorbent materials inside the sorbent pouches. Any of the pouches in the sorbent cartridge can be reused and/or recharged.