Abstract:
STI (Shallow Trench Isolation) structures are fabricated such that leakage current is minimized through a field effect transistor fabricated between the STI structures. The shallow trench isolation structure include a pair of isolation trenches, with each isolation trench being etched through a semiconductor substrate. A first dielectric material fills the pair of isolation trenches and extends from the isolation trenches such that sidewalls of the first dielectric material filling the isolation trenches are exposed beyond the top of the semiconductor substrate. A second dielectric material is deposited on the sidewalls of the first dielectric material exposed beyond the top of the semiconductor substrate. The second dielectric material has a different etch rate in an acidic solution from the first dielectric material filling the isolation trenches. The present invention may be used to particular advantage when the first dielectric material filling up the isolation trenches is comprised of silicon dioxide, and when the second dielectric material deposited on the sidewalls of the first dielectric material is comprised of silicon nitride. With the protective silicon nitride covering the sidewalls of the silicon dioxide filling the STI (shallow trench isolation) trenches, formation of divots is avoided in the silicon dioxide filling the STI (shallow trench isolation) trenches. Thus, when a field effect transistor is fabricated between such STI structures, silicides formed near the STI structures do not extend down toward the junction of the drain contact region and the source contact region of the field effect transistor such that drain and source leakage current is minimized.
Abstract:
A thin filmed fully-depleted silicon-on-insulator (SOI) metal oxide semiconductor field effect transistor (MOSFET) utilizes a local insulation structure. The local insulative structure includes a buried silicon dioxide region under the channel region. The MOSFET body thickness is very small and yet silicon available outside of the channel region and buried silicon dioxide region is available for sufficient depths of silicide in the source and drain regions. The buried silicon dioxide region can be formed by a trench isolation technique or a LOCOS technique.
Abstract:
An integrated circuit is provided having an improved packing density due to an improved isolation structure between a plurality of devices on the substrate. An ultra shallow trench isolation structure is provided, typically having a trench depth just deeper than the doped regions of a transistor or other device placed thereon, but substantially shallower than the depth of a well associated with the transistor. A nitrogen ion implantation step is utilized to fabricate an implanted portion beneath the insulative portion, the implanted portion extending preferably below the depth of the well. Due to a shallower trench isolation structure, the structure may also be narrower, providing for improved packing density in a semiconductor device.
Abstract:
A deep submicron MOS device having a self-aligned silicide gate structure and a method for forming the same is provided so as to overcome the problems of poly-Si depletion and boron penetration. A first Nickel silicide layer is formed between a gate oxide and a polycrystalline silicon gate electrode. Further, second Nickel silicide layers are formed over highly-doped source/drain regions. In this fashion, the reliability of the MOS device will be enhanced.
Abstract:
A method of forming a MOSFET device is provided. First lightly doped regions are formed, the first lightly doped regions including LDD extension regions of the device. Second very lightly doped regions are formed at least partially below the first lightly doped regions, respectively, the second very lightly doped regions having a dopant concentration less than the first lightly doped regions, and the second very lightly doped regions being implanted at a higher energy level than the first lightly doped regions.
Abstract:
Submicron contacts/vias and trenches are provided in a dielectric layer by forming an opening having an initial dimension and reducing the initial dimension by depositing a second dielectric material in the opening.
Abstract:
Sub-micron contacts/vias and conductive lines in a dielectric layer are formed by etching through a photoresist mask containing openings having a dimension less than that achievable by conventional photolithographic techniques. Such minimal size openings are obtained by initially forming an oversized opening by conventional photolithographic techniques and then reducing the size of the opening by forming a sidewall spacer, such as a dielectric sidewall spacer, within the opening. In an embodiment, a plurality of openings are formed in first photoresist layer, each of which openings is provided with a sidewall spacer. The openings are filled with a filling material, such as a second photoresist material, and the photoresist mask and sidewall spacers are removed leaving a plurality of masking portions containing the second photoresist material. An underlying conductive layer is then etched through masking portions to form conductive lines having sub-micron dimensions.
Abstract:
A method of fabricating an interconnection level of conductive lines and connecting vias separated by insulation for integrated circuits and substrate carriers for semiconductor devices using dual damascene with only one mask pattern for the formation of both the conductive lines and vias. The mask pattern of conductive lines contains laterally enlarged areas where the via openings are to formed in the insulating material. After the conductive line openings with laterally enlarged areas are created, the openings are filled with a conformal material whose etch selectivity is substantially less than the etch selectivity of the insulating material to the enchant for etching the insulating material and whose etch selectivity is substantially greater than the insulating material to its enchant. The conformal material is anisotropically etched to form sidewalls in the enlarged area and remove the material between the sidewalls but leave material remaining in the parts of the conductive lines openings. The sidewalls serve as self aligned mask for etching via openings. The conformal material is either a conductive material which is left in place after the via openings are formed or an insulating material which is removed. In the former, the partially filled conductive line openings are filled with additional conductive material along with the via, which is either the same or different conductive material. In the latter, the conductive line openings and vias are filled with the same conductive material.
Abstract:
A process is provided which enables electrical connection to be formed between gold and aluminum wires and copper interconnects. Conventional techniques for wire bonding are ineffective for bonding gold wires or aluminum wires to copper pads or copper interconnects. A process is provided to modify the copper pads so that conventional wire bonding techniques can be employed. In the process of the present invention an aluminum pad is formed over the copper interconnects. The metal wire is then bonded to the aluminum pad using conventional wire bonding techniques. No new hardware and/or technology is required for the metal wire bonding. No new technology is required to integrate the process of the invention into existing IC fabrication processes.
Abstract:
A dual damascene method of fabricating an interconnection level of conductive lines and connecting vias separated by insulation for integrated circuits and substrate carriers for semiconductor devices using a sacrificial via fill. A first layer of insulating material is formed with via openings. The openings are filled with a sacrificial removable material. A second layer of insulating material is deposed on the first layer. In one embodiment, the etch selectivity to the etchant of the second layer is essentially the same as the sacrificial via fill and, preferably, is substantially higher than second layer. Using a conductive line pattern aligned with the via openings, conductive line openings are etched in the second insulating layer and, during etching, the sacrificial fill is removed from the via openings. In a second embodiment, the sacrificial material is not etchable by the etchant for forming the conductive line openings and, after formation of the conductive line openings, the sacrificial material is removed with an etchant to which the first insulating layer is resistive or less selective. A conductive material now is deposited in the conductive line and via openings.