Abstract:
A method of driving a display device includes displaying an image corresponding to a left eye image signal during a first frame set including one or more frames and displaying an image corresponding to a right eye image signal during a second frame set including one or more successive frames, in which the first frame set and the second frame set include at least one frame displaying a first image according to a first gamma curve and at least one frame displaying a second image according to a second gamma curve, and the first frame set and the second frame set include two successive frames displaying the second image.
Abstract:
A display apparatus includes a display panel for displaying an image and that includes a plurality of display areas, a light source part for providing a light to the display panel, a luminance measurer for measuring a luminance of each display area of the display panel and outputting a panel luminance signal of each display area of the display panel, and a light source driver for driving the light source part based on the panel luminance signal to decrease the light source luminance signal of each display area of the display panel when the panel luminance signal of each display area of the display panel increases and to increase the light source luminance signal of each display area of the display panel when the panel luminance signal of each display area of the display panel decreases.
Abstract:
A display device includes a display panel including sub-pixels, a first driver adjacent to a first side of the display panel to generate first signals, and a second driver adjacent to the first side to generate second signals. The display panel includes vertical lines including one ends disposed at the first side to apply the first signals to the sub-pixels, diagonal lines crossing the vertical lines to apply the second signals to the sub-pixels, and crossing lines crossing the vertical and diagonal lines. The diagonal lines include first diagonal lines including one ends at the first side and second diagonal lines including one ends at a second side adjacent to the first side. The crossing lines include one ends at the first side and the other ends at the second side. The crossing lines receive the second signals and apply the second signals to the second diagonal lines.
Abstract:
A method of driving a display panel includes generating a high data voltage having a high gamma corresponding to a grayscale of input image data, generating a low data voltage having a low gamma less than the high gamma corresponding to the grayscale of the input image data and outputting the high data voltage and the low data voltage to pixels of a display panel. Of the high data voltage and the low data voltage, only the low data voltage is outputted to the pixels of the display panel during at least one frame.
Abstract:
A liquid crystal display includes first and second sub-pixels charged with the same voltage during a first period. The voltage charged in the second sub-pixel is decreased after the first period. Since the voltage level of the first sub-pixel is different from the voltage level of the second sub-pixel after the first period, liquid crystal molecules disposed corresponding to the first sub-pixel are aligned in a direction different from that of liquid crystal molecules disposed corresponding to the second sub-pixel. Thus, a side viewing angle of the liquid crystal display is improved.
Abstract:
A method of driving a display panel is disclosed. In one aspect, the display panel includes a plurality of pixels arranged in odd and even rows and a plurality of odd and even gate lines respectively connected to the pixels of the corresponding odd and even rows. The method includes outputting odd gate signals to the odd numbered gate lines during two consecutive subframes and outputting even gate signals to the even numbered gate lines during two consecutive subframes. A frame is divided into two subframes.
Abstract:
A method of driving a display panel includes detecting a position of a viewer to output a viewer position detection signal, determining whether the position of the viewer is in a first area or in a second area based on the viewer position detection signal to output a viewer position signal, and driving a unit pixel of the display panel using a plurality of gamma values according to the viewer position signal. The first area is less than a reference distance, and the second area is not less than the reference distance. Thus, side visibility of a display apparatus may be improved.
Abstract:
A display device includes a memory which stores gamma data for gamma curves including a first gamma curve and a second gamma curve; a gray voltage generator which generates gray voltages based on the gamma data; a data driver which receives an input image signal from a signal controller and converts the input image signal into a data voltage using the gray voltages; and a display panel including pixels which receives the data voltage and may display an image, where the pixel displays images corresponding to the input image signal during one frame set, one frame set includes consecutive frames, the images displayed by a pixel includes first and second images displayed based on the first and second gamma curves, respectively, a luminance of the first image is not less than a luminance of the second image, and the second image is displayed in two consecutive frames.
Abstract:
A display device includes: a first switching element which transmits a first data voltage; a second switching element which transmits a second data voltage; a driving transistor connected to the first switching element and the second switching element, where the driving transistor is driven based on the first data voltage and the second data voltage; and an organic light emitting diode connected to the driving transistor, where the organic light emitting diode emits light based on an output of the driving transistor, and a driving method thereof.
Abstract:
A display device includes gate lines, data lines, first wires and second wires extending in the directions of the gate lines and data lines, and pixels having a first subpixel and a second subpixel each. The first subpixel has a first subpixel electrode and a first switching element, and the second subpixel has a second subpixel electrode and second and third switching elements. The control terminals of the three switching elements are connected to the same gate line, and the input terminals of the first and second switching elements are connected to the same data line. The first and second switching elements have output terminals connected to the first and second subpixel electrodes, respectively. The second switching element's output terminal connects to the third switching element, which has an output terminal connected to a second wire. The first wires and the second wires are connected in a pixel.