摘要:
Method of manufacturing a ribbed structure with fiber-reinforced composite material is provided. A mold for the structure is prepared having a mold surface. Non-hardened resin containing reinforcing fibers are placed on the mold surface of the structure mold. A mold for a rib is formed by using a material containing biodegradable polymers. Non-hardened resin containing reinforcing fibers are laminated on the rib mold, and then the rib mold is placed in a predetermined position on the non-hardened resin containing the reinforcing fibers tin the mold surface of the structure mold. The non-hardened resins are hardened and the rib mold is biochemically degraded wherein in the hardening of the resins, the resin hardened on the rib mold and the resin hardened on the mold surface of the structure mold are united with each other.
摘要:
A fiber bundle for image transmission includes pluralities of first optical fibers and a plurality of second optical fibers. Both pluralities of optical fibers being tied at their distal ends to form a composite bundle portion. The first optical fibers being tied at their proximal ends to form a first branched bundle portion and the second optical fibers being tied at their proximal ends to form a second branched bundle portion.
摘要:
A semi-conductive silicone rubber composition contains carbon black. The carbon black contains thermal black obtained by thermally cracking a natural gas and having a specific surface area—nitrogen absorption method of 8.0 to 10.0 m2/g, a dibutyl phthalate absorption number (dibutyl phthalate absorption number) of 30 to 40 cm3/100 g and an averaged particle size of 200 to 330 nm.
摘要:
An object of the present invention is to provide a method of producing an Ag—ZnO electric contact material which can uniformly disperse ZnO micrograms in Ag; which maintains low contact resistance; which exhibits enhanced welding resistance and wear resistance; and which is suitable in view of production costs. The method of producing an Ag—ZnO electrical contact material comprises casting Ag and Zn at predetermined proportions and subjecting the resultant Ag—ZnO alloy to internal oxidation so as to disperse ZnO in Ag, the method being characterized in that an Ag—Zn alloy comprising 5-10 wt. % (as reduced to weight of metal) Zn, the balance being Ag, is formed into chips; the chips are subjected to internal oxidation; the internally oxidized chips are compacted to thereby form billets; the billets are pressed and sintered; and subsequently, the sintered billets are extruded, to thereby yield uniform dispersion, in Ag, of ZnO micrograms.
摘要:
A core is made of a biodegradable material, reinforcing fibers and non-hardened resin are laminated on the core so as to form a fiber-reinforced composite material. Then, the fiber-reinforced composite material is hardened, and then biochemically active substances, such as microorganisms and enzymes, are brought into contact with the core so that the core is biochemically degraded and removed.
摘要:
A conductive member is used in a state in which the conductive member maintains contact with a subject member. The conductive member has a single-body structure and is formed of a polymeric base material that contains a conducting filler. A portion of the conductive member in which the density of the conducting filler is lower than that in the remaining portion or substantially zero ranges 20-120 &mgr;m inwardly from an end of the conductive member at which the conductive member abuts the subject member.
摘要:
A base polymer is mixed with a non-polymerizable compound having a higher refractive index to form a fiber material. This material is continuously transformed into a fiber in a fiber-preparing unit. The fiber is dipped in diffusion tanks containing monomer substances so as to diffuse these substances into the fiber, and cured in a heater so as to polymerize these substances. By alternatingly repeating this procedure, the monomer substances and the non-polymerizable compound are diffused in the fiber and form a graded refractive index. Next, the fiber is drawn, coated with a cladding and coiled. This method can be performed with a high running ratio, minimizing the necessity of scaling-up of the facilities when the production is increased, and easily confers a desired index grading on the fiber. Likewise, the method allow continued manufacturing of a graded refractive index plastic optical-fiber with a desired length and of constant quality.
摘要:
A preform having a core and a cladding portion is prepared for a refractive index-distributed type plastic optical fiber. The fiber obtained has a large difference in refractive index between the central and peripheral zone of the core portion. This suppresses light propagation modes in the cladding portion, a cause of deteriorated transmission characteristics, without raising the concentration of non-polymerizable compounds contained in the core portion. To manufacture the preform, a cylindrical vessel is prepared from a polymer, which serves as cladding portion. The inner surface of the preform is then provided with a polymer-containing layer having a refractive index lower than that of the polymer used for the core portion, so as to leave a cavity inside this vessel. This cavity is then filled with a monomer, which is subsequently polymerized while dissolving the lower-refractive index, polymer-containing layer, so as to form the core portion.
摘要:
Tubular parison of a molten resin to such an extent as to melt undergoes a pre-blow with a blow molding apparatus, whereupon the blown tubular parison is clamped between dies of a blow molding apparatus, and also, is mutually weld together with parts of the inside faces of the tubular parison to form a multiple of isolated hollows in the parison. Gas is fed through a multiple of gas feed nozzles which are provided in the die into the hollow portions. A number of the hollow portions are opened in a second process to form a functional part.
摘要:
For an aperture plate to be used to form dot images of a two dimensional aperture pattern by projection through an imaging optical system in a normal direction, a pattern of markings in ideal positions is projected through an imaging optical system in the reverse direction to normal imaging operations. The image of the pattern is recorded at the position of the aperture plate, and the recorded image is used as a guide to form corrected apertures in the aperture plate. Accordingly, locational errors of the dot images in the normal direction are corrected when the corrected aperture plate is used.