Oleophilic foams for oil spill mitigation

    公开(公告)号:US10550010B2

    公开(公告)日:2020-02-04

    申请号:US14967021

    申请日:2015-12-11

    摘要: A method of fabricating an oleophilic foam includes providing a foam comprising a base material. The base material is coated with an inorganic material using at least one of an atomic layer deposition (ALD), a molecular layer deposition (MLD) or sequential infiltration synthesis (SIS) process. The SIS process includes at least one cycle of exposing the foam to a first metal precursor for a first predetermined time and a first partial pressure. The first metal precursor infiltrates at least a portion of the base material and binds with the base material. The foam is exposed to a second co-reactant precursor for a second predetermined time and a second partial pressure. The second co-reactant precursor reacts with the first metal precursor, thereby forming the inorganic material on the base material. The inorganic material infiltrating at least the portion of the base material. The inorganic material is functionalized with an oleophilic material.

    Digital electron amplifier with anode readout devices and methods of fabrication

    公开(公告)号:US10121642B2

    公开(公告)日:2018-11-06

    申请号:US15952973

    申请日:2018-04-13

    IPC分类号: H01J43/24

    摘要: Scalable electron amplifier devices and methods of fabricating the devices an atomic layer deposition (“ALD”) fabrication process are described. The ALD fabrication process allows for large area (e.g., eight inches by eight inches) electron amplifier devices to be produced at reduced costs compared to current fabrication processes. The ALD fabrication process allows for nanostructure functional coatings, to impart a desired electrical conductivity and electron emissivity onto low cost borosilicate glass micro-capillary arrays to form the electron amplifier devices.

    FAST METHOD FOR REACTOR AND FEATURE SCALE COUPLING IN ALD AND CVD
    99.
    发明申请
    FAST METHOD FOR REACTOR AND FEATURE SCALE COUPLING IN ALD AND CVD 有权
    ALD和CVD中反应器和特征尺度耦合的快速方法

    公开(公告)号:US20160253441A1

    公开(公告)日:2016-09-01

    申请号:US14633025

    申请日:2015-02-26

    IPC分类号: G06F17/50 G06F17/18

    摘要: Transport and surface chemistry of certain deposition techniques is modeled. Methods provide a model of the transport inside nanostructures as a single-particle discrete Markov chain process. This approach decouples the complexity of the surface chemistry from the transport model, thus allowing its application under general surface chemistry conditions, including atomic layer deposition (ALD) and chemical vapor deposition (CVD). Methods provide for determination of determine statistical information of the trajectory of individual molecules, such as the average interaction time or the number of wall collisions for molecules entering the nanostructures as well as to track the relative contributions to thin-film growth of different independent reaction pathways at each point of the feature.

    摘要翻译: 模拟了某些沉积技术的运输和表面化学。 方法提供纳米结构内作为单粒子离散马尔科夫链过程的传输模型。 这种方法将表面化学的复杂性与传输模型分离,从而允许其在一般表面化学条件下应用,包括原子层沉积(ALD)和化学气相沉积(CVD)。 方法提供确定各个分子的轨迹的统计信息,例如进入纳米结构的分子的平均相互作用时间或壁碰撞次数,以及跟踪不同独立反应途径对薄膜生长的相对贡献 在功能的每个点。

    ARTIFICIAL ZEOLITES
    100.
    发明申请
    ARTIFICIAL ZEOLITES 审中-公开
    人造ZEOLITES

    公开(公告)号:US20160220989A1

    公开(公告)日:2016-08-04

    申请号:US14609276

    申请日:2015-01-29

    摘要: Zeolites are industrially important materials possessing high Bronsted acidity and shape-selectivity. However, their inherently small pores restrict application for catalytic conversion of bulky molecules. A method of synthesis of ‘artificial’ zeolites. The artificial zeolites have well-tailored Bronsted and Lewis acid sites prepared on mesostructured silica to circumvent this limitation. This novel approach utilizes atomic layer deposition to tailor both porosity and acid speciation, providing exquisite control over catalytic behavior and enabling systematic studies.

    摘要翻译: 沸石是工业上重要的具有较高布朗斯台德酸度和形状选择性的材料。 然而,它们固有的小孔限制了大体积分子的催化转化的应用。 合成“人造”沸石的方法。 人造沸石具有在介孔二氧化硅上制备的良好定制的布朗斯台德和路易斯酸位点,以避免这种限制。 这种新颖的方法利用原子层沉积来定制孔隙度和酸形态,提供对催化行为的精细控制并且能够进行系统研究。