Abstract:
An apparatus (100, 100′) is configured such that passage of a fluid (30) through an open port (136, 2604) of a distal probe tip (112, 112′) enables detection of a substance (116) that may be present on a surface (31, 33), e.g., a surface of a tooth, based on measurement of a signal correlating to a substance at least partially obstructing the passage of fluid (30) through the open port (136, 2604). The apparatus (100, 100′) includes a proximal pump portion (124) and at least one distal probe portion (110) configured to be immersed in another fluid (11), e.g., water in toothpaste foam. A corresponding system (3000) includes one or two such apparatuses (3100, 3200). A method of detecting the presence of a substance on a surface includes probing an interaction zone (17) for at least partial obstruction of flow of the fluid (30) through the distal probe tip (112, 112′). The distal probe tip (112, 112′) may have a structural configuration for preventing blocking of the open port (136, 2604). The distal probe tip (112, 112′) may also have a non-uniform wear profile. The at least one distal probe portion (110) may include two or multiple components to improve performance and reliability.
Abstract:
A detection apparatus (1000) enables detection of a substance (116) that may be present on the surface (31, 33) based on measurement of a stream probe signal correlating a substance (116) at least partially obstructing the passage of fluid (30, 35) through a stream probe (500) includes a distal optical gum detector transmission portion (620) and a distal optical gum detector reception portion (720) in a position to transmit and to receive, respectively, an optical signal controlled by a controller (2251), enables the controller (2251) to determine if an open port (526) of a distal tip (522) of the stream probe (500) is in contact with a substance (116) at least partially obstructing the passage of fluid (30, 35) through the open port (526) and not in contact with the gums of a subject or of a user of the detection apparatus (1000) to override false positive signals.
Abstract:
A method for treating an orthodontic condition can include receiving patient data, such as through a website, accessing a database having information derived from patient treatments, generating a model of an orthodontic condition defining one or more anatomic features of a set of teeth, identifying a diagnosis of an orthodontic condition and identifying a treatment regimen for the diagnosis. A method can include tagging an anatomic feature with an electronic identifier and automatically generating a tooth setup. A system can include a server and a database, which can include information relating to patient treatments, and a website for receiving patient data. A system can include an electronic model representing anatomic features of a patient's teeth and an application adapted to identify a diagnosis and a treatment regimen for an orthodontic condition, which can include executing artificial intelligence and/or other algorithms.
Abstract:
Smart fiber optic sensors, systems, and methods for performing quantitative optical spectroscopy are disclosed. In one embodiment, smart fiber optic sensor can include a sensing channel, a calibration channel, and a pressure sensing channel. External force or pressure can be calculated at pressure sensing channel for monitoring and controlling pressure at a sensor-specimen interface thereby ensuring more accurate specimen spectral data is collected. Contact pressure can be adjusted to remain within a specified range. A calibration light of the calibration channel and an illumination light of the sensing channel can be generated simultaneously from a shared light source. Pressure sensing channel can transmit light from a second light source and collect pressure spectral data.
Abstract:
The present invention relates to a system device and method for monitoring infant oral motor kinetics (OMK), which can be used to assess the functional significance of the different sucking components, i.e., the plasticity of infant sucking skills in relation to their oral feeding performance, at a particular time, during the developmental period and/or during preventive or therapeutic intervention programs. It is a unique system and apparatus that provides a means to study the nonnutritive and/or nutritive sucking skills, i.e., the Suction and/or Expression components of sucking, of infants in the natural setting, i.e., during a normal feeding session. OMK sensors, tracked in real-time by the monitoring system, include miniature pressure transducers, or pressure sensitive pads, attached to the nipple for measuring intraoral pressure pulses during Suction, and for measuring compression/stripping pressure pulses during Expression; and a miniature flow sensor for measuring fluid flow rate, which can be integrated over time to determine the volume of milk removed (bolus) per suck. Other signals, such as respiration, swallowing, thermal, optical, and acoustic signals can be recorded and compared along with the instrumented-nipple signals, in an OMK monitoring system.
Abstract:
A method and an apparatus for measuring and displaying dental plaque are provided, and the method includes the steps of dividing near infrared light output from a light source into measurement light and reference light, applying the measurement light toward a tooth in an oral cavity and scanning the tooth with the measurement light, producing interference light from reflected light and back-scattered light from the tooth and the reference light, generating an optical coherence tomographic image based on a scattering intensity value of the interference light, extracting a dental plaque region having a specific scattering intensity value from the optical coherence tomographic image, and quantifying the dental plaque. A method and an apparatus for measuring and displaying gingiva and/or alveolar bone are further provided. A method and an apparatus for quantifying dental plaque, digitizing the dental plaque, and generating an image of the dental plaque are further provided.
Abstract:
The document proposes a diagnostic chewing gum for identifying the presence of inflammatory tissues in the mouth, in particular in or adjacent to the mandible, the maxilla, an implant or the teeth of a user, comprising a base material or particles (3) embedded and/or attached to said base material; an element (1, 5-7), like e.g. a releasable flavor molecule, attached to said base material and/or said particles, for the generation of a change in the chewing gum directly detectable by the user; wherein the element (1, 5-7) generates the change upon direct or indirect contact with a marker (4), e.g. a proteolytic enzyme, which is released by inflammatory tissue in response to bacterial mediators.
Abstract:
A method for treating an orthodontic condition can include receiving patient data, such as through a website, accessing a database having information derived from patient treatments, generating a model of an orthodontic condition defining one or more anatomic features of a set of teeth, identifying a diagnosis of an orthodontic condition and identifying a treatment regimen for the diagnosis. A method can include tagging an anatomic feature with an electronic identifier and automatically generating a tooth setup. A system can include a server and a database, which can include information relating to patient treatments, and a website for receiving patient data. A system can include an electronic model representing anatomic features of a patient's teeth and an application adapted to identify a diagnosis and a treatment regimen for an orthodontic condition, which can include executing artificial intelligence and/or other algorithms.
Abstract:
An apparatus for evaluating the tongue strength of a subject during a sucking event includes an insert positioned within a nipple element to provide an output in response to deformation of the nipple element during a sucking event. The output is at least one of resistive force exerted against the subject's tongue and movement measurement of deformation force exerted on the nipple element during the sucking event. The apparatus is configurable to evaluate nutritive sucking (NS) or non-nutritive sucking (NNS) capabilities of the subject. The insert may be a sensing device, a compliance element, an intermediate device or a combination of these. A coupling device is configured to position the insert relative to the nipple element and/or to receive output from the insert. A method includes evaluating tongue strength of a subject during NS or NNS and using inserts providing increasing levels of resistive force to exercise the subject's tongue.
Abstract:
Described is a mandibular manipulator instrument as a standalone tool or with associated mouthpiece that includes two interlocking laterally sliding frames including a movable upper and a lower incisor pull, shaped for receiving a patient's central incisor teeth and a pair of pinion shafts for driving the upper and lower incisor pulls. A screw thread is used to provide a precise lateral motion for the sagittal measurement. The mouthpiece is constructed of resilient rubber. The manipulator is positioned and held in the resilient rubber mouthpiece by the two pinions protruding through acoustically tight apertures respective to each pinion's position. The manipulator can be used for other applications in an embodiment without the mouthpiece and/or in combination with a bite registration shape that is part of the manipulator frame.