Abstract:
A castable, moldable, or extrudable magnesium-based alloy that includes one or more insoluble additives. The insoluble additives can be used to enhance the mechanical properties of the structure, such as ductility and/or tensile strength. The final structure can be enhanced by heat treatment, as well as deformation processing such as extrusion, forging, or rolling, to further improve the strength of the final structure as compared to the non-enhanced structure. The magnesium-based composite has improved thermal and mechanical properties by the modification of grain boundary properties through the addition of insoluble nanoparticles to the magnesium alloys. The magnesium-based composite can have a thermal conductivity that is greater than 180 W/m−K, and/or ductility exceeding 15-20% elongation to failure.
Abstract:
A castable, moldable, or extrudable structure using a metallic base metal or base metal alloy. One or more insoluble additives are added to the metallic base metal or base metal alloy so that the grain boundaries of the castable, moldable, or extrudable structure includes a composition and morphology to achieve a specific galvanic corrosion rates partially or throughout the structure or along the grain boundaries of the structure. The insoluble additives can be used to enhance the mechanical properties of the structure, such as ductility and/or tensile strength. The insoluble particles generally have a submicron particle size. The final structure can be enhanced by heat treatment, as well as deformation processing such as extrusion, forging, or rolling, to further improve the strength of the final structure as compared to the non-enhanced structure.
Abstract:
Described herein is a crucible with a rod fused thereon to optimize pouring of molten material, and method of using the same. The crucible has a body configured for receipt of an amorphous alloy material in a vertical direction, and the rod extends in a horizontal direction from the body. The body of the crucible and the rod are formed from silica or quartz. The rod may be fused to the body of the crucible and provided off a center axis so that pouring molten material is improved when the crucible is rotated.
Abstract:
Exemplary embodiments described herein relate to methods and apparatus for forming a coating layer at least partially on surface of a BMG article formed of bulk solidifying amorphous alloys. In embodiments, the coating layer may be formed in situ during formation of a BMG article and/or post formation of a BMG article. The coating layer may provide the BMG article with surface hardness, wear resistance, surface activity, corrosion resistance, etc.
Abstract:
A method and device for producing motor vehicle chassis parts is provided. The motor vehicle chassis parts can be subjected to tensile stress, compressive stress and torsion and the mechanical strength of the motor vehicle chassis parts can be adjusted over the respective cross-section. The motor vehicle chassis parts have high ductility and temperature stability and are made of an AlSiZnMg alloy by permanent mould casting.
Abstract:
A castable, moldable, or extrudable structure using a metallic base metal or base metal alloy. One or more insoluble additives are added to the metallic base metal or base metal alloy so that the grain boundaries of the castable, moldable, or extrudable structure includes a composition and morphology to achieve a specific galvanic corrosion rates partially or throughout the structure or along the grain boundaries of the structure. The insoluble additives can be used to enhance the mechanical properties of the structure, such as ductility and/or tensile strength. The insoluble particles generally have a submicron particle size. The final structure can be enhanced by heat treatment, as well as deformation processing such as extrusion, forging, or rolling, to further improve the strength of the final structure as compared to the non-enhanced structure.
Abstract:
A casting method and cast article are provided. The casting method includes providing a casting furnace, the casting furnace including a withdrawal region in a lower end, positioning a mold within the casting furnace, positioning a molten material in the mold, partially withdrawing the mold a withdrawal distance through the withdrawal region in the casting furnace, the withdrawal distance providing a partially withdrawn portion, then reinserting at least a portion of the partially withdrawn portion into the casting furnace through the withdrawal region, and then completely withdrawing the mold from the casting furnace. The reinserting partially re-melts a solidified portion within the partially withdrawn portion to fill pores formed therein with the molten material. The cast article includes a microstructure and a porosity corresponding to being formed by a process comprising partially withdrawing, reinserting, and completely withdrawing of a mold from a casting furnace to form the cast article.
Abstract:
A method for removing a part from a mold and to a machine for molding the part, the part made of a material having a glass-transition temperature and a melting temperature that is higher than the glass-transition temperature, and which is shaped in the cavity of a mold, includes at least two mold portions defining the shaping cavity therebetween. The mold is at a temperature between the glass-transition temperature and the melting temperature. The method includes opening the mold by spacing apart the mold portions, locally spraying a cooling gas toward the part remaining in a portion of the mold using at least one nozzle, and, after a predetermined time period following the start of spraying the gas, ejecting the part from the portion of the mold, the time period being such that the part reaches a temperature that is lower than the glass-transition temperature thereof.
Abstract:
Various embodiments provide an apparatus and methods for containing the molten materials within a melt zone during melting. The apparatus may include a vessel configured to receive a material for melting therein and an induction coil with unevenly spaced turns along its length. Induction coil can have a series of turns acting as a first (e.g., load) induction coil and a series of turns acting as a second (e.g., containment) induction coil. The material in the vessel can be heated and contained by the separated turns of the induction coil. A plunger can also assist in containing material during melting. Once the desired temperature is achieved and maintained for the molten material, operation of the induction coil can be stopped and the molten material can be ejected from the vessel into a mold using the plunger.
Abstract:
A turbomachine component and method for fabricating the turbomachine component are provided. The turbomachine component may include a matrix material and carbon nanotubes combined with the matrix material. The matrix material may include a metal or a polymer. The carbon nanotubes may be contacted with the metal to form a metal-based carbon nanotube composite, and the metal-based carbon nanotube composite may be processed to fabricate the turbomachine component.