Abstract:
A braking band (14) of a disc for a disc brake (100) suitable to rotate about a rotation axis (A-A), said braking band comprising opposite annular braking surfaces (16, 18) which extend from an inner edge (20) facing towards the rotation axis (A-A) to an outer edge (22) facing towards the outside of the disc, said braking band (14) having a distribution of grooves (44, 48, 52, 101, 103, 105, 107, 109, 111, 113) on at least one of the braking surfaces (16, 18), said distribution, or distribution assembly of grooves, having a pattern or module (42, 43) which is repeated circumferentially, each of said grooves (44, 48, 52, 101, 103, 105, 107, 109, 111, 113) being a closed groove which extends in a main direction of extension (46, 50, 54, 102, 104, 106, 108, 110, 112, 114) which defines a direction (46a, 50a, 54a, 102a, 104a, 106a, 108a, 110a, 112a, 114a) of said groove, each groove further extending without intersecting other grooves, said module (42, 43) extends from an inner radius (r1) to an outer radius (r2), said radii defining an annular portion of said braking surface having said grooves, said module (42, 43) comprising a first groove (44 and/or 105), which extends without interruption substantially from said inner radius (r1) to said outer radius (r2), as well as at least a second (48 and/or 107) and a third groove (52 and/or 109) with lesser extensions than said first groove (44), said first, second and third grooves (44, 48, 52 and/or 105, 107, 109) of the same module (42 or 43) have extensions parallel to one another, wherein said second groove (48 and/or 107) has a greater extension than said third groove (52 and/or 109), and wherein said at least first, second and third grooves (44, 48, 52 and/or 105, 107, 109) are positioned alongside one another and said second groove (48 and/or 107) is positioned between said first groove (44 and/or 105) and said third groove (52 and/or 109), and wherein the extension of said first groove is suitable to affect the entire area touched by at least one brake pad (124) suitable to act in conjunction with said annular braking surface (16 and/or 18) to exert a braking action, and wherein at any point in the direction of extension of each groove, said direction of extension (46a, 50a, 54a, 102a, 104a, 106a, 108a, 110a, 112a, 114a), or its rectilinear prolongation, forms an acute angle with respect to a radial direction (R-R) or a prolongation of the inner radius (r1) or of the outer radius (r2).
Abstract:
A method for forming a vehicular brake rotor involving loading a shaped metal substrate with a mixture of metal alloying components and ceramic particles in a dieheating the contents of the die while applying pressure to melt at least one of the metal components of the alloying mixture whereby to densify the contents of the die and form a ceramic particle-containing metal matrix composite coating on the metallic substrate; and cooling the resulting coated product.
Abstract:
A brake disc for a motor vehicle is disclosed. The brake disc includes a substrate, in particular a grey cast iron substrate, at least one friction surface formed on the substrate and at least one cover layer applied at least to the at least one friction surface. The cover layer is harder and thinner than the substrate and color changes to enable identification are introduced in the cover layer by a pulsed laser.
Abstract:
The invention relates to a method for producing a brake disc (1) for a vehicle, in which a protective layer is arranged on a base member (2) of the brake disc (1). The base member is formed of aluminum or of an aluminum alloy.It is proposed that the method comprise at least the steps: pre-machining at least the friction surfaces (7, 8) of the base member (2) in blank form; applying an enamel coating (10) as an anti-corrosion and/or anti-wear layer at least onto the friction surfaces (7, 8) of the brake disc (1), and post-treating the base member (2) coated at least in places, wherein the enamel coating (10) bonds metallurgically to the base material of the base member (2).
Abstract:
A brake disc for a wheeled vehicle; said brake disc including opposing annular braking surfaces; each of said surfaces provided with an identical pattern of disparate arcuate groove segments; said groove segments arranged in groups oriented in both clockwise and anti-clockwise directions; each of said groups including, one series of at least two arcuate groove segments lying along a common arc extending from proximate a hub of said braking surface to proximate the periphery of said braking surface, one inward arcuate groove segment extending from proximate said hub to a point intermediate said hub and said periphery, and one outward arcuate groove segment extending from a point intermediate said hub and said periphery to proximate said periphery.
Abstract:
A friction plate is formed in such a manner that a plurality of friction material segments fixed to an annular core plate, wherein a passage extends through from an inner diameter side to an outer diameter side and is defined between the plurality of friction material segments, and a forming portion for retaining air is provided on a bottom surface of the passage.
Abstract:
A method for the reconditioning and use of brake discs of the rear stator type with studs. The method includes the steps of using a first disc (12) during a first life, using a second disc (112) during a first life, after the first life of the first disc and the first life of the second disc, machining a friction surface on one of the discs and a rear surface on the other of the discs so that one of the surfaces has at least one shoulder (17) and the other of the surfaces has at least one notch (118). Finally, the first disc is nested in the second disc such that the notch and the shoulder cooperate so as to center the discs.
Abstract:
Provided is a high heat resistant brake disk for a railroad vehicle, which is manufactured using a nano material having high heat conductivity, such as a carbon nanotube (CNT) or graphene, to improve heat resistance of an overheated portion of the brake disk, and which can extend a life of the brake disk by suppressing performance deterioration due to a thermal shock. The high heat resistant brake disk includes a hub inserted into an axle of the railroad vehicle and an outer circumference coupled to a vehicle wheel to coaxially rotate with the vehicle wheel, wherein at least one pattern unit made from a high heat resistant nano material is formed on one surface of the brake disk.
Abstract:
The invention relates to a process for producing a brake disk for a vehicle, in which a friction layer is arranged at least in certain regions on a base body of the brake disk.
Abstract:
The present disclosure provides a brake disk for a brake assembly. The disk includes an annular body having an inner diameter and an outer diameter. The disk also includes friction material coupled to the body and substantially covering at least one side thereof The friction material forms a first diameter and a second diameter, where the first diameter is smaller than the second diameter. The disk further includes a groove pattern defined in the friction material. The groove pattern includes a plurality of grooves, where each of the plurality of grooves includes an inlet defined at the first diameter and an outlet defined at the second diameter. The inlet defines a first width and the outlet defines a second width such that the first width is greater than the second width.