Abstract:
A fluorescence detection apparatus for analyzing samples located in a plurality of wells in a thermal cycler and methods of use are provided. In one embodiment, the apparatus includes a support structure attachable to the thermal cycler and a detection module movably mountable on the support structure. The detection module includes one or more channels, each having an excitation light generator and an emission light detector both disposed within the detection module. When the support structure is attached to the thermal cycler and the detection module is mounted on the support structure, the detection module is movable so as to be positioned in optical communication with different ones of the plurality of wells. The detection module is removable from the support structure to allow easy replacement.
Abstract:
A blood analysis apparatus is provided. The blood analysis apparatus includes: a chip holding portion having an aperture which allows light to pass therethrough and holding a μ-TAS chip for holding a measurement liquid; a rotary body on which the chip holding portion is mounted; a light source; and a light-receiving unit. A measurement position of the rotary body at which the measurement liquid is to be measured with the light from the light source is set by: rotating the rotary body to obtain a light value of light which is emitted from the light source and received by the light-receiving unit through the aperture; and setting a rotational position of the rotary body where the light value is a threshold value or more, as the measurement position.
Abstract:
Scanning of a microarray is performed through a mask that exposes a plurality, but not all, of the sites of the microarray, and either the mask is movable relative to the microarray or the microarray is movable relative to the mask, or both. The mask is useful as a means of restricting the illumination of sites on the microarray to those that can be illuminated while the scan head is traveling at a steady, target velocity, blocking the passage of light between the scan head and the microarray at those points in the scan head trajectory where the scan head is either accelerating or decelerating. The mask is also useful for reducing background noise in the microarray image by preventing light spillage to sites adjacent to those being scanned.
Abstract:
A fluorescence detection apparatus for analyzing samples located in a plurality of wells in a thermal cycler and methods of use are provided. In one embodiment, the apparatus includes a support structure attachable to the thermal cycler and a detection module movably mountable on the support structure. The detection module includes one or more channels, each having an excitation light generator and an emission light detector both disposed within the detection module. When the support structure is attached to the thermal cycler and the detection module is mounted on the support structure, the detection module is movable so as to be positioned in optical communication with different ones of the plurality of wells. The detection module is removable from the support structure to allow easy replacement.
Abstract:
A fluorescence detection apparatus for analyzing samples located in a plurality of wells in a thermal cycler and methods of use are provided. In one embodiment, the apparatus includes a support structure attachable to the thermal cycler and a detection module movably mountable on the support structure. The detection module includes one or more channels, each having an excitation light generator and an emission light detector both disposed within the detection module. When the support structure is attached to the thermal cycler and the detection module is mounted on the support structure, the detection module is movable so as to be positioned in optical communication with different ones of the plurality of wells. The detection module is removable from the support structure to allow easy replacement.
Abstract:
A multiphoton excitaion microscope for simultaneously detecting differently colored fluorescence materials on biochips includes a multiphoton excitation source, objectives, and a plurality of detection channels. The biochip is hybridized and labeled with fluorescence materials for expressing hybridized biological signals. The multiphoton excitation source is focused to a light spot on the biochip to excite the fluorescence materials bound thereon. After that, the fluorescence emission at different wavelengths from the different fluorescent materials can be detected by the plural detection channels.
Abstract:
The present invention relates to a photometric device for measuring optical parameters. The invention functions in the ultraviolet light range through use of a monochromator and splits the test light in multiple channels by a rotor assembly, including a mirror.
Abstract:
Apparatus for performing and measuring chemical reactions includes a reaction test apparatus having reaction wells wherein reactants are controllably mixed, and exposure apparatus which receives and positions the reaction test apparatus adjacent a photographic film. Each of the reaction wells includes at least two reaction chambers, arranged in a side by side fashion. All but the final reaction chamber have upwardly sloping sides, so that liquid placed in one reaction chamber can flow to the next reaction chamber when the apparatus is tilted. In a preferred embodiment, the reaction wells are supported in a plate that is structurally integral with the wells but separates the wells from each other. The test plate is retained in the exposure apparatus, and liquid is controllably flowed from one reaction chamber to the next by tilting the exposure apparatus. The apparatus of the invention is particularly suited for measuring reactions that produce luminescence of short duration, as the reactants can be conveniently mixed in darkness, while the film is being exposed.
Abstract:
The present invention intends to generally maintain the microplate having added test samples in wells therein at even temperature for measuring biochemical or biological reaction accompanying changes in absorbance such as enzyme reaction. Monochromatic lights with various wave lengths from a light source 3 are transmitted through the test samples added to a plurality of wells in a microplate 1 to measure absorbance of the test sample. For this end, a metal plate 2 with good heat conductivity is substantially contacted with the bottom of each well in the microplate 1 and a perforated board 7 is disposed with an air space over the microplate 1 at the starting position thereof. Warmed air heated by a heater 17 is blown onto the microplate 1 through the perforated board 7 and is circulated along the metal plate 2 within a chamber 9.
Abstract:
An aggregation pattern detecting apparatus includes a microplate having a plurality of reactive vessels in which aggregation patterns are formed, a light source arranged above the microplate, and a light sensor arrangement positioned below the microplate. The microplate is removably fastened to a main body, and a movable frame is movably supported on the main body. The light source and light sensor arrangement are carried on the movable frame for movement therewith. A driving mechanism effects movement of the movable frame and is controlled by a main control section. A reference plate is provided separately from the microplate, and has a plurality of through holes therein which correspond to the reactive vessels of the microplate. The reference plate is removably fastenable to the main body at the normal operative position of the microplate. With the reference plate in this position, the distance from a starting point of the driving mechanism to the through holes of the reference plate is measured and stored in the main control section. Based on these stored distances, the main control section determines appropriate operational positions for the light sensor.